Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Oligodendrocyte precursors induce early blood-brain barrier opening after white matter injury
Ji Hae Seo, … , Eng H. Lo, Ken Arai
Ji Hae Seo, … , Eng H. Lo, Ken Arai
Published January 2, 2013
Citation Information: J Clin Invest. 2013;123(2):782-786. https://doi.org/10.1172/JCI65863.
View: Text | PDF
Brief Report Neuroscience

Oligodendrocyte precursors induce early blood-brain barrier opening after white matter injury

  • Text
  • PDF
Abstract

Oligodendrocyte precursor cells (OPCs) are thought to maintain homeostasis and contribute to long-term repair in adult white matter; however, their roles in the acute phase after brain injury remain unclear. Mice that were subjected to prolonged cerebral hypoperfusion stress developed white matter demyelination over time. Prior to demyelination, we detected increased MMP9 expression, blood-brain barrier (BBB) leakage, and neutrophil infiltration in damaged white matter. Notably, at this early stage, OPCs made up the majority of MMP9-expressing cells. The standard MMP inhibitor GM6001 reduced the early BBB leakage and neutrophil infiltration, indicating that OPC-derived MMP9 induced early BBB disruption after white matter injury. Cell-culture experiments confirmed that OPCs secreted MMP9 under pathological conditions, and conditioned medium prepared from the stressed OPCs weakened endothelial barrier tightness in vitro. Our study reveals that OPCs can rapidly respond to white matter injury and produce MMP9 that disrupts the BBB, indicating that OPCs may mediate injury in white matter under disease conditions.

Authors

Ji Hae Seo, Nobukazu Miyamoto, Kazuhide Hayakawa, Loc-Duyen D. Pham, Takakuni Maki, Cenk Ayata, Kyu-Won Kim, Eng H. Lo, Ken Arai

×

Figure 1

OPCs and MMP9 under white matter pathology.

Options: View larger image (or click on image) Download as PowerPoint
OPCs and MMP9 under white matter pathology.
(A) Cerebral prolonged hypop...
(A) Cerebral prolonged hypoperfusion stress–induced demyelination in the mouse corpus callosum. n = 5. Quantitative data are shown in Supplemental Figure 1. (B) In our white matter injury model, MMP9 but not MMP2 was increased in the white matter. (C–E) At day 3, most MMP9 signals were observed in NG2/PDGF-R-α–positive OPCs. But at later time points, at days 7 and 14, CD31-positive cerebral endothelial cells (EC) were colocalized with MMP9 signals. n = 5. (F) Notably, OPCs (PDGF-R-α) existed around BBB leakage areas (IgG) at day 3.

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts