Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Enzymatic function of hemoglobin as a nitrite reductase that produces NO under allosteric control
Zhi Huang, … , Alan N. Schechter, Mark T. Gladwin
Zhi Huang, … , Alan N. Schechter, Mark T. Gladwin
Published August 1, 2005
Citation Information: J Clin Invest. 2005;115(8):2099-2107. https://doi.org/10.1172/JCI24650.
View: Text | PDF
Research Article Hematology

Enzymatic function of hemoglobin as a nitrite reductase that produces NO under allosteric control

  • Text
  • PDF
Abstract

Hypoxic vasodilation is a fundamental, highly conserved physiological response that requires oxygen and/or pH sensing coupled to vasodilation. While this process was first characterized more than 80 years ago, the precise identity and mechanism of the oxygen sensor and mediators of vasodilation remain uncertain. In support of a possible role for hemoglobin (Hb) as a sensor and effector of hypoxic vasodilation, here we show biochemical evidence that Hb exhibits enzymatic behavior as a nitrite reductase, with maximal NO generation rates occurring near the oxy-to-deoxy (R-to-T) allosteric structural transition of the protein. The observed rate of nitrite reduction by Hb deviates from second-order kinetics, and sigmoidal reaction progress is determined by a balance between 2 opposing chemistries of the heme in the R (oxygenated conformation) and T (deoxygenated conformation) allosteric quaternary structures of the Hb tetramer — the greater reductive potential of deoxyheme in the R state tetramer and the number of unligated deoxyheme sites necessary for nitrite binding, which are more plentiful in the T state tetramer. These opposing chemistries result in a maximal nitrite reduction rate when Hb is 40–60% saturated with oxygen (near the Hb P50), an apparent ideal set point for hypoxia-responsive NO generation. These data suggest that the oxygen sensor for hypoxic vasodilation is determined by Hb oxygen saturation and quaternary structure and that the nitrite reductase activity of Hb generates NO gas under allosteric and pH control.

Authors

Zhi Huang, Sruti Shiva, Daniel B. Kim-Shapiro, Rakesh P. Patel, Lorna A. Ringwood, Cynthia E. Irby, Kris T. Huang, Chien Ho, Neil Hogg, Alan N. Schechter, Mark T. Gladwin

×

Full Text PDF | Download (1.06 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts