Neutrophils and neutrophil extracellular traps (NETs) contribute to early neuromyelitis optica (NMO) histopathology initiated by IgG targeting astrocytic aquaporin-4 water (AQP4) channels. Yet, the mechanisms underlying neutrophil recruitment and their pathogenic roles in disease progression remain unclear. To investigate molecular-cellular events preceding classical complement cascade activation in a mouse NMO model, we continuously infused, via spinal subarachnoid route, a non-complement-activating mouse monoclonal AQP4-IgG. Parenchymal infiltration of netting neutrophils containing C5a ensued with microglial activation and motor impairment, but no blood–brain barrier leakage. Motor impairment and neuronal dysfunction both reversed when AQP4-IgG infusion stopped. Two-photon microscopy and electron-microscopy-based reconstructions revealed physical interaction of infiltrating neutrophils with microglia. Ablation of either peripheral neutrophils or microglia attenuated the motor deficit, highlighting their synergistic pathogenic roles. Of note, mice lacking complement receptor C5aR1 exhibited reduction in neutrophil infiltration, microglial lysosomal activation, neuronal lipid-droplet burden and motor impairment. Pharmacological inhibition of C5aR1 recapitulated this protection. Immunohistochemical analysis of an NMO patient’s spinal cord revealed disease-associated microglia surrounding motor neurons in non-destructive lesions. Our study identifies neutrophil-derived C5a signaling through microglial C5aR1 as a key early driver of reversible motor neuron dysfunction in the precytolytic phase of NMO.
Fangfang Qi, Vanda A. Lennon, Shunyi Zhao, Yong Guo, Husheng Ding, Caiyun Liu, Whitney M. Bartley, Tingjun Chen, Claudia F. Lucchinetti, Long-Jun Wu