Mitochondrial metabolism orchestrates T cell functions, yet the role of specific mitochondrial components in distinct T cell subsets remains poorly understood. Here, we explored the role of mitochondrial complex II (MC II), the only complex from the electron transport chain (ETC) that plays a role in both ETC and metabolism, in regulating T cell functions. Surprisingly, MC II exerts divergent effects on CD4+ and CD8+ T cell activation and function. Using T cell–specific MC II subunit, succinate dehydrogenase A–deficient (SDHA-deficient) mice, we integrated single-cell RNA-seq and metabolic profiling, with in vitro and in vivo T cell functional assays to illuminate these differences. SDHA deficiency induced metabolic changes and remodeled gene expression exclusively in activated T cells. In CD4+ T cells, SDHA loss dampened both oxidative phosphorylation (OXPHOS) and glycolysis, impaired cytokine production, proliferation, and reduced CD4+ T cell–mediated graft-versus-host disease after allogeneic stem cell transplantation (SCT). In contrast, SDHA deficiency in CD8+ T cells reduced OXPHOS but paradoxically upregulated glycolysis and demonstrated enhanced cytotoxic functions in vitro and in vivo. This metabolic reprogramming endowed SDHA-KO CD8+ T cells with superior in vivo antitumor efficacy after immune checkpoint inhibitor therapy and allogeneic SCT. These findings reveal MC II as a bifurcation point for metabolic and functional specialization in CD4+ and CD8+ T cells.
Keisuke Seike, Shih-Chun A. Chu, Yuichi Sumii, Takashi Ikeda, Meng-Chih Wu, Laure Maneix, Dongchang Zhao, Yaping Sun, Marcin Cieslik, Pavan Reddy