Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Proteostasis and metabolic dysfunction characterize a subset of storage-induced senescent erythrocytes targeted for posttransfusion clearance
Sandy Peltier, … , Angelo D’Alessandro, Pascal Amireault
Sandy Peltier, … , Angelo D’Alessandro, Pascal Amireault
Published March 11, 2025
Citation Information: J Clin Invest. 2025;135(9):e183099. https://doi.org/10.1172/JCI183099.
View: Text | PDF
Research Article Cell biology Hematology

Proteostasis and metabolic dysfunction characterize a subset of storage-induced senescent erythrocytes targeted for posttransfusion clearance

  • Text
  • PDF
Abstract

Although refrigerated storage slows the metabolism of volunteer donor RBCs, which is essential in transfusion medicine, cellular aging still occurs throughout this in vitro process. Storage-induced microerythrocytes (SMEs) are morphologically altered senescent RBCs that accumulate during storage and are cleared from circulation following transfusion. However, the molecular and cellular alterations that trigger clearance of this RBC subset remain to be identified. Using a staining protocol that sorts long-stored SMEs (i.e., CFSEhi) and morphologically normal RBCs (CFSElo), these in vitro aged cells were characterized. Metabolomics analysis identified depletion of energy, lipid-repair, and antioxidant metabolites in CFSEhi RBCs. By redox proteomics, irreversible protein oxidation primarily affected CFSEhi RBCs. By proteomics, 96 proteins, mostly in the proteostasis family, had relocated to CFSEhi RBC membranes. CFSEhi RBCs exhibited decreased proteasome activity and deformability; increased phosphatidylserine exposure, osmotic fragility, and endothelial cell adherence; and were cleared from the circulation during human spleen perfusion ex vivo. Conversely, molecular, cellular, and circulatory properties of long-stored CFSElo RBCs resembled those of short-stored RBCs. CFSEhi RBCs are morphologically and metabolically altered, have irreversibly oxidized and membrane-relocated proteins, and exhibit decreased proteasome activity. In vitro aging during storage selectively alters metabolism and proteostasis in these storage-induced senescent RBCs targeted for clearance.

Authors

Sandy Peltier, Mickaël Marin, Monika Dzieciatkowska, Michaël Dussiot, Micaela Kalani Roy, Johanna Bruce, Louise Leblanc, Youcef Hadjou, Sonia Georgeault, Aurélie Fricot, Camille Roussel, Daniel Stephenson, Madeleine Casimir, Abdoulaye Sissoko, François Paye, Safi Dokmak, Papa Alioune Ndour, Philippe Roingeard, Emilie-Fleur Gautier, Steven L. Spitalnik, Olivier Hermine, Pierre A. Buffet, Angelo D’Alessandro, Pascal Amireault

×

Usage data is cumulative from March 2025 through May 2025.

Usage JCI PMC
Text version 1,524 0
PDF 337 0
Figure 40 0
Supplemental data 84 0
Citation downloads 26 0
Totals 2,011 0
Total Views 2,011

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts