Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Upcoming)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
BosR and PlzA reciprocally regulate RpoS function to sustain Borrelia burgdorferi in ticks and mammals
André A. Grassmann, … , Justin D. Radolf, Melissa J. Caimano
André A. Grassmann, … , Justin D. Radolf, Melissa J. Caimano
Published January 17, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI166710.
View: Text | PDF
Research In-Press Preview Infectious disease Microbiology

BosR and PlzA reciprocally regulate RpoS function to sustain Borrelia burgdorferi in ticks and mammals

  • Text
  • PDF
Abstract

The alternative sigma factor RpoS in Borrelia burgdorferi (Bb), the Lyme disease pathogen, is responsible for programmatic positive and negative gene regulation essential for the spirochete’s dual-host enzootic cycle. RpoS is expressed during tick-to-mammal transmission and throughout mammalian infection. Although the mammalian-phase RpoS regulon is well described, its counterpart during the transmission blood meal is unknown. Here, we used Bb-specific transcript enrichment by TBDCapSeq to compare the transcriptomes of wild-type and ΔrpoS Bb in engorged nymphs and following mammalian host-adaptation within dialysis membrane chambers. TBDCapSeq revealed dramatic changes in the contours of the RpoS regulon within ticks and mammals and further confirmed that RpoS-mediated repression is specific to the mammalian-phase of Bb’s enzootic cycle. We also provide evidence that RpoS-dependent gene regulation, including repression of tick-phase genes, is required for persistence in mice. Comparative transcriptomics of engineered Bb strains revealed that BosR, a non-canonical Fur family regulator, and the c-di-GMP effector PlzA reciprocally regulate RpoS function. BosR is required for RpoS-mediated transcription activation and repression in addition to its well-defined role promoting RpoN-dependent transcription of rpoS. During transmission, liganded-PlzA antagonizes RpoS-mediated repression, presumably acting through BosR.

Authors

André A. Grassmann, Rafal Tokarz, Caroline Golino, Melissa A. McLain, Ashley M. Groshong, Justin D. Radolf, Melissa J. Caimano

×

Full Text PDF | Download (4.34 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts