Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
BAM15 treats mouse sepsis and kidney injury, linking mortality, mitochondrial DNA, tubule damage, and neutrophils
Naoko Tsuji, … , Peter S.T. Yuen, Robert A. Star
Naoko Tsuji, … , Peter S.T. Yuen, Robert A. Star
Published February 9, 2023
Citation Information: J Clin Invest. 2023;133(7):e152401. https://doi.org/10.1172/JCI152401.
View: Text | PDF
Research Article Nephrology

BAM15 treats mouse sepsis and kidney injury, linking mortality, mitochondrial DNA, tubule damage, and neutrophils

  • Text
  • PDF
Abstract

Sepsis pathogenesis is complex and heterogeneous; hence, a precision-medicine strategy is needed. Acute kidney injury (AKI) following sepsis portends higher mortality. Overproduction of mitochondrial ROS (mtROS) is a potential mediator of sepsis and sepsis-induced AKI. BAM15, a chemical uncoupler, dissipates mitochondrial proton gradients without generating mtROS. We injected BAM15 into mice at 0, 6, or 12 hours after cecal ligation and puncture (CLP), and these mice were treated with fluids and antibiotics. BAM15 reduced mortality, even after 12 hours, when mice were ill, and BAM15 reduced kidney damage and splenic apoptosis. Serial plasma and urinary mitochondrial DNA (mtDNA) levels increased after CLP and decreased after BAM15 administration (at 0 or 6 hours). In vitro septic serum proportionately increased mtROS overproduction and mtDNA release from kidney tubule cells, which BAM15 prevented. BAM15 decreased neutrophil apoptosis and mtDNA release; neutrophil depletion counteracted BAM15 benefits. Further, mtDNA injection in vivo replicated inflammation and kidney injury, which was prevented by BAM15. A large dose of exogenous mtDNA reversed protection by BAM15. We conclude that BAM15 is an effective preventive and therapeutic candidate in experimental sepsis and that BAM15 and mtDNA, a potential drug-companion diagnostic/drug-efficacy pair for clinical sepsis, are mechanistically linked via mtROS.

Authors

Naoko Tsuji, Takayuki Tsuji, Tetsushi Yamashita, Naoki Hayase, Xuzhen Hu, Peter S.T. Yuen, Robert A. Star

×

Full Text PDF | Download (4.68 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts