Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Issue published April 3, 2023 Previous issue | Next issue

  • Volume 133, Issue 7
Go to section:
  • News
  • Commentaries
  • Research Articles

On the cover: NaV1.6 dysregulation in arrhythmias

Tarasov et al. report that long QT syndrome–associated calmodulin mutant D96V promotes arrhythmias by dysregulating NaV1.6 within T-tubules, thereby facilitating aberrant Ca2+ release in ventricular cardiomyocytes. Image credit: Anita Impagliazzo.

News
Nicole Calakos wins the 2023 ASCI/Stanley J. Korsmeyer Award
Lisa Conti
Lisa Conti
Published April 3, 2023
Citation Information: J Clin Invest. 2023;133(7):e169829. https://doi.org/10.1172/JCI169829.
View: Text | PDF

Nicole Calakos wins the 2023 ASCI/Stanley J. Korsmeyer Award

  • Text
  • PDF
Abstract

Authors

Lisa Conti

×
Commentaries
Seeking neuroprotection in multiple sclerosis: an ongoing challenge
Jack P. Antel, … , Timothy E. Kennedy, Tanja Kuhlmann
Jack P. Antel, … , Timothy E. Kennedy, Tanja Kuhlmann
Published April 3, 2023
Citation Information: J Clin Invest. 2023;133(7):e168595. https://doi.org/10.1172/JCI168595.
View: Text | PDF

Seeking neuroprotection in multiple sclerosis: an ongoing challenge

  • Text
  • PDF
Abstract

Multiple sclerosis (MS) is an autoimmune disease of the CNS, featuring inflammation and demyelination with variable recovery. In this issue of the JCI, Kapell, Fazio, and authors address the potential for targeting neuron-oligodendrocyte potassium shuttling at the nodes of Ranvier as a neuroprotective strategy during inflammatory demyelination of the CNS in experimental MS. Their extensive and impressive study could serve as a template for defining the physiologic properties of a putative protective pathway. The authors examined MS features in existent disease models, investigated the impact of pharmacologic intervention, and evaluated its status in tissues from patients with MS. We await future studies that will tackle the challenge of translating these findings into a clinical therapy.

Authors

Jack P. Antel, Timothy E. Kennedy, Tanja Kuhlmann

×

Glutamate shall not pass: a mechanistic role for astrocytic O-GlcNAc transferase in stress and depression
Sam E.J. Paton, Caroline Menard
Sam E.J. Paton, Caroline Menard
Published April 3, 2023
Citation Information: J Clin Invest. 2023;133(7):e168662. https://doi.org/10.1172/JCI168662.
View: Text | PDF

Glutamate shall not pass: a mechanistic role for astrocytic O-GlcNAc transferase in stress and depression

  • Text
  • PDF
Abstract

Major depressive disorder, characterized by aberrant glutamatergic signaling in the prefrontal cortex (PFC), is a leading cause of disability worldwide. Depression is highly comorbid with metabolic disorders, but a mechanistic link is elusive. In this issue of the JCI, Fan and coauthors report that elevated posttranslational modification with the glucose metabolite N-acetylglucosamine (GlcNAc) by O-GlcNAc transferase (OGT) contributed to stress-induced establishment of depression-like behaviors in mice. This effect was specific to medial PFC (mPFC) astrocytes, with glutamate transporter-1 (GLT-1) identified as an OGT target. Specifically, O-GlcNAcylation of GLT-1 resulted in diminished glutamate clearance from excitatory synapses. Further, astrocytic OGT knockdown restored stress-induced deficits in glutamatergic signaling, promoting resilience. These findings provide a mechanistic link between metabolism and depression and have relevance for antidepressant targets.

Authors

Sam E.J. Paton, Caroline Menard

×

LRH-1 induces hepatoprotective nonessential amino acids in response to acute liver injury
Kevin C. Klatt, … , Elizabeth J. Petviashvili, David D. Moore
Kevin C. Klatt, … , Elizabeth J. Petviashvili, David D. Moore
Published April 3, 2023
Citation Information: J Clin Invest. 2023;133(7):e168805. https://doi.org/10.1172/JCI168805.
View: Text | PDF

LRH-1 induces hepatoprotective nonessential amino acids in response to acute liver injury

  • Text
  • PDF
Abstract

Acute hepatic injury is observed in response to various stressors, including trauma, ingestion of hepatic toxins, and hepatitis. Investigations to date have focused on extrinsic and intrinsic signals required for hepatocytes to proliferate and regenerate the liver in response to injury, though there is a more limited understanding of induced stress responses promoting hepatocyte survival upon acute injury. In this issue of the JCI, Sun and colleagues detail a mechanism by which local activation of the nuclear receptor liver receptor homolog-1 (LRH-1; NR5A2) directly induces de novo asparagine synthesis and expression of asparagine synthetase (ASNS) in response to injury and show that this response restrains hepatic damage. This work opens up several avenues for inquiry, including the potential for asparagine supplementation to ameliorate acute hepatic injury.

Authors

Kevin C. Klatt, Elizabeth J. Petviashvili, David D. Moore

×
Research Articles
NaV1.6 dysregulation within myocardial T-tubules by D96V calmodulin enhances proarrhythmic sodium and calcium mishandling
Mikhail Tarasov, … , Rengasayee Veeraraghavan, Przemysław B. Radwański
Mikhail Tarasov, … , Rengasayee Veeraraghavan, Przemysław B. Radwański
Published February 23, 2023
Citation Information: J Clin Invest. 2023;133(7):e152071. https://doi.org/10.1172/JCI152071.
View: Text | PDF

NaV1.6 dysregulation within myocardial T-tubules by D96V calmodulin enhances proarrhythmic sodium and calcium mishandling

  • Text
  • PDF
Abstract

Calmodulin (CaM) plays critical roles in cardiomyocytes, regulating Na+ (NaV) and L-type Ca2+ channels (LTCCs). LTCC dysregulation by mutant CaMs has been implicated in action potential duration (APD) prolongation and arrhythmogenic long QT (LQT) syndrome. Intriguingly, D96V-CaM prolongs APD more than other LQT-associated CaMs despite inducing comparable levels of LTCC dysfunction, suggesting dysregulation of other depolarizing channels. Here, we provide evidence implicating NaV dysregulation within transverse (T) tubules in D96V-CaM–associated arrhythmias. D96V-CaM induced a proarrhythmic late Na+ current (INa) by impairing inactivation of NaV1.6, but not the predominant cardiac NaV isoform NaV1.5. We investigated arrhythmia mechanisms using mice with cardiac-specific expression of D96V-CaM (cD96V). Super-resolution microscopy revealed close proximity of NaV1.6 and RyR2 within T-tubules. NaV1.6 density within these regions increased in cD96V relative to WT mice. Consistent with NaV1.6 dysregulation by D96V-CaM in these regions, we observed increased late NaV activity in T-tubules. The resulting late INa promoted aberrant Ca2+ release and prolonged APD in myocytes, leading to LQT and ventricular tachycardia in vivo. Cardiac-specific NaV1.6 KO protected cD96V mice from increased T-tubular late NaV activity and its arrhythmogenic consequences. In summary, we demonstrate that D96V-CaM promoted arrhythmias by dysregulating LTCCs and NaV1.6 within T-tubules and thereby facilitating aberrant Ca2+ release.

Authors

Mikhail Tarasov, Heather L. Struckman, Yusuf Olgar, Alec Miller, Mustafa Demirtas, Vladimir Bogdanov, Radmila Terentyeva, Andrew M. Soltisz, Xiaolei Meng, Dennison Min, Galina Sakuta, Izabella Dunlap, Antonia D. Duran, Mark P. Foster, Jonathan P. Davis, Dmitry Terentyev, Sándor Györke, Rengasayee Veeraraghavan, Przemysław B. Radwański

×

BAM15 treats mouse sepsis and kidney injury, linking mortality, mitochondrial DNA, tubule damage, and neutrophils
Naoko Tsuji, … , Peter S.T. Yuen, Robert A. Star
Naoko Tsuji, … , Peter S.T. Yuen, Robert A. Star
Published February 9, 2023
Citation Information: J Clin Invest. 2023;133(7):e152401. https://doi.org/10.1172/JCI152401.
View: Text | PDF

BAM15 treats mouse sepsis and kidney injury, linking mortality, mitochondrial DNA, tubule damage, and neutrophils

  • Text
  • PDF
Abstract

Sepsis pathogenesis is complex and heterogeneous; hence, a precision-medicine strategy is needed. Acute kidney injury (AKI) following sepsis portends higher mortality. Overproduction of mitochondrial ROS (mtROS) is a potential mediator of sepsis and sepsis-induced AKI. BAM15, a chemical uncoupler, dissipates mitochondrial proton gradients without generating mtROS. We injected BAM15 into mice at 0, 6, or 12 hours after cecal ligation and puncture (CLP), and these mice were treated with fluids and antibiotics. BAM15 reduced mortality, even after 12 hours, when mice were ill, and BAM15 reduced kidney damage and splenic apoptosis. Serial plasma and urinary mitochondrial DNA (mtDNA) levels increased after CLP and decreased after BAM15 administration (at 0 or 6 hours). In vitro septic serum proportionately increased mtROS overproduction and mtDNA release from kidney tubule cells, which BAM15 prevented. BAM15 decreased neutrophil apoptosis and mtDNA release; neutrophil depletion counteracted BAM15 benefits. Further, mtDNA injection in vivo replicated inflammation and kidney injury, which was prevented by BAM15. A large dose of exogenous mtDNA reversed protection by BAM15. We conclude that BAM15 is an effective preventive and therapeutic candidate in experimental sepsis and that BAM15 and mtDNA, a potential drug-companion diagnostic/drug-efficacy pair for clinical sepsis, are mechanistically linked via mtROS.

Authors

Naoko Tsuji, Takayuki Tsuji, Tetsushi Yamashita, Naoki Hayase, Xuzhen Hu, Peter S.T. Yuen, Robert A. Star

×

Impaired protein hydroxylase activity causes replication stress and developmental abnormalities in humans
Sally C. Fletcher, … , Katrin Õunap, Mathew L. Coleman
Sally C. Fletcher, … , Katrin Õunap, Mathew L. Coleman
Published February 16, 2023
Citation Information: J Clin Invest. 2023;133(7):e152784. https://doi.org/10.1172/JCI152784.
View: Text | PDF

Impaired protein hydroxylase activity causes replication stress and developmental abnormalities in humans

  • Text
  • PDF
Abstract

Although protein hydroxylation is a relatively poorly characterized posttranslational modification, it has received significant recent attention following seminal work uncovering its role in oxygen sensing and hypoxia biology. Although the fundamental importance of protein hydroxylases in biology is becoming clear, the biochemical targets and cellular functions often remain enigmatic. JMJD5 is a “JmjC-only” protein hydroxylase that is essential for murine embryonic development and viability. However, no germline variants in JmjC-only hydroxylases, including JMJD5, have yet been described that are associated with any human pathology. Here we demonstrate that biallelic germline JMJD5 pathogenic variants are deleterious to JMJD5 mRNA splicing, protein stability, and hydroxylase activity, resulting in a human developmental disorder characterized by severe failure to thrive, intellectual disability, and facial dysmorphism. We show that the underlying cellular phenotype is associated with increased DNA replication stress and that this is critically dependent on the protein hydroxylase activity of JMJD5. This work contributes to our growing understanding of the role and importance of protein hydroxylases in human development and disease.

Authors

Sally C. Fletcher, Charlotte Hall, Tristan J. Kennedy, Sander Pajusalu, Monica H. Wojcik, Uncaar Boora, Chan Li, Kaisa Teele Oja, Eline Hendrix, Christian A.E. Westrip, Regina Andrijes, Sonia K. Piasecka, Mansi Singh, Mohammed E. El-Asrag, Anetta Ptasinska, Vallo Tillmann, Martin R. Higgs, Deanna A. Carere, Andrew D. Beggs, John Pappas, Rachel Rabin, Stephen J. Smerdon, Grant S. Stewart, Katrin Õunap, Mathew L. Coleman

×

O-GlcNAc transferase in astrocytes modulates depression-related stress susceptibility through glutamatergic synaptic transmission
Jun Fan, … , Tian-Ming Gao, Xiong Cao
Jun Fan, … , Tian-Ming Gao, Xiong Cao
Published February 9, 2023
Citation Information: J Clin Invest. 2023;133(7):e160016. https://doi.org/10.1172/JCI160016.
View: Text | PDF

O-GlcNAc transferase in astrocytes modulates depression-related stress susceptibility through glutamatergic synaptic transmission

  • Text
  • PDF
Abstract

Major depressive disorder is a common and devastating psychiatric disease, and the prevalence and burden are substantially increasing worldwide. Multiple studies of depression patients have implicated glucose metabolic dysfunction in the pathophysiology of depression. However, the molecular mechanisms by which glucose and related metabolic pathways modulate depressive-like behaviors are largely uncharacterized. Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) is a glucose metabolite with pivotal functions as a donor molecule for O-GlcNAcylation. O-GlcNAc transferase (OGT), a key enzyme in protein O-GlcNAcylation, catalyzes protein posttranslational modification by O-GlcNAc and acts as a stress sensor. Here, we show that Ogt mRNA was increased in depression patients and that astroglial OGT expression was specifically upregulated in the medial prefrontal cortex (mPFC) of susceptible mice after chronic social-defeat stress. The selective deletion of astrocytic OGT resulted in antidepressant-like effects, and moreover, astrocytic OGT in the mPFC bidirectionally regulated vulnerability to social stress. Furthermore, OGT modulated glutamatergic synaptic transmission through O-GlcNAcylation of glutamate transporter-1 (GLT-1) in astrocytes. OGT astrocyte–specific knockout preserved the neuronal morphology atrophy and Ca2+ activity deficits caused by chronic stress and resulted in antidepressant effects. Our study reveals that astrocytic OGT in the mPFC regulates depressive-like behaviors through the O-GlcNAcylation of GLT-1 and could be a potential target for antidepressants.

Authors

Jun Fan, Fang Guo, Ran Mo, Liang-Yu Chen, Jia-Wen Mo, Cheng-Lin Lu, Jing Ren, Qiu-Ling Zhong, Xiao-Jing Kuang, You-Lu Wen, Ting-Ting Gu, Jin-Ming Liu, Shu-Ji Li, Ying-Ying Fang, Cunyou Zhao, Tian-Ming Gao, Xiong Cao

×

IL-1 receptor–associated kinase-3 acts as an immune checkpoint in myeloid cells to limit cancer immunotherapy
Gürcan Tunalı, … , Irineos Papakyriacou, Yumeng Mao
Gürcan Tunalı, … , Irineos Papakyriacou, Yumeng Mao
Published February 9, 2023
Citation Information: J Clin Invest. 2023;133(7):e161084. https://doi.org/10.1172/JCI161084.
View: Text | PDF

IL-1 receptor–associated kinase-3 acts as an immune checkpoint in myeloid cells to limit cancer immunotherapy

  • Text
  • PDF
Abstract

Inflammatory mediators released by cancer cells promote the induction of immune suppression and tolerance in myeloid cells. IL-1 receptor–associated kinase-3 (IRAK3) is a pseudokinase that inhibits IL-1/TLR signaling, but its role in patients treated with immune checkpoint blockade (ICB) therapy remains unclear. Using RNA-Seq data from the IMvigor210 trial, we found that tumors with high IRAK3 expressions showed enriched antiinflammatory pathways and worse clinical response to ICB therapy. Upon IRAK3 protein deletion with CRISPR/Cas9, primary human monocytes displayed altered global protein expression and phosphorylation in quantitative proteomics and released more proinflammatory cytokines in response to stimulation. Bone marrow–derived macrophages from an IRAK3 CRISPR KO mouse model demonstrated a proinflammatory phenotype and enhanced sensitivity to TLR agonists compared with WT cells. IRAK3 deficiency delayed the growth of carcinogen-induced and oncogene-driven murine cancer cells and induced enhanced activation in myeloid cells and T cells. Upon ICB treatment, IRAK3-KO mice showed enrichment of TCF1+PD-1+ stem-like memory CD8+ T cells and resulted in superior growth inhibition of immunologically cold tumors in vivo. Altogether, our study demonstrated what we believe to be a novel cancer-driven immune tolerance program controlled by IRAK3 in humans and mice and proposed its suitability as an immunotherapy target.

Authors

Gürcan Tunalı, Marta Rúbies Bedós, Divya Nagarajan, Patrik Fridh, Irineos Papakyriacou, Yumeng Mao

×

Cancer-associated fibroblast-secreted glucosamine alters the androgen biosynthesis program in prostate cancer via HSD3B1 upregulation
Di Cui, … , Belinda Willard, Nima Sharifi
Di Cui, … , Belinda Willard, Nima Sharifi
Published April 3, 2023
Citation Information: J Clin Invest. 2023;133(7):e161913. https://doi.org/10.1172/JCI161913.
View: Text | PDF

Cancer-associated fibroblast-secreted glucosamine alters the androgen biosynthesis program in prostate cancer via HSD3B1 upregulation

  • Text
  • PDF
Abstract

After androgen deprivation, prostate cancer frequently becomes castration resistant (CRPC), with intratumoral androgen production from extragonadal precursors that activate the androgen receptor pathway. 3β-Hydroxysteroid dehydrogenase-1 (3βHSD1) is the rate-limiting enzyme for extragonadal androgen synthesis, which together lead to CRPC. Here, we show that cancer-associated fibroblasts (CAFs) increased epithelial 3βHSD1 expression, induced androgen synthesis, activated the androgen receptor, and induced CRPC. Unbiased metabolomics revealed that CAF-secreted glucosamine specifically induced 3βHSD1. CAFs induced higher GlcNAcylation in cancer cells and elevated expression of the transcription factor Elk1, which induced higher 3βHSD1 expression and activity. Elk1 genetic ablation in cancer epithelial cells suppressed CAF-induced androgen biosynthesis in vivo. In patient samples, multiplex fluorescent imaging showed that tumor cells expressed more 3βHSD1 and Elk1 in CAF-enriched areas compared with CAF-deficient areas. Our findings suggest that CAF-secreted glucosamine increases GlcNAcylation in prostate cancer cells, promoting Elk1-induced HSD3B1 transcription, which upregulates de novo intratumoral androgen synthesis to overcome castration.

Authors

Di Cui, Jianneng Li, Ziqi Zhu, Michael Berk, Aimalie Hardaway, Jeffrey McManus, Yoon-Mi Chung, Mohammad Alyamani, Shelley Valle, Ritika Tiwari, Bangmin Han, Maryam Goudarzi, Belinda Willard, Nima Sharifi

×

Coordinated activation of c-Src and FOXM1 drives tumor cell proliferation and breast cancer progression
Ipshita Nandi, … , Benita S. Katzenellenbogen, William J. Muller
Ipshita Nandi, … , Benita S. Katzenellenbogen, William J. Muller
Published February 16, 2023
Citation Information: J Clin Invest. 2023;133(7):e162324. https://doi.org/10.1172/JCI162324.
View: Text | PDF

Coordinated activation of c-Src and FOXM1 drives tumor cell proliferation and breast cancer progression

  • Text
  • PDF
Abstract

Activation of the tyrosine kinase c-Src promotes breast cancer progression and poor outcomes, yet the underlying mechanisms are incompletely understood. Here, we have shown that deletion of c-Src in a genetically engineered model mimicking the luminal B molecular subtype of breast cancer abrogated the activity of forkhead box M1 (FOXM1), a master transcriptional regulator of the cell cycle. We determined that c-Src phosphorylated FOXM1 on 2 tyrosine residues to stimulate its nuclear localization and target gene expression. These included key regulators of G2/M cell-cycle progression as well as c-Src itself, forming a positive feedback loop that drove proliferation in genetically engineered and patient-derived models of luminal B–like breast cancer. Using genetic approaches and small molecules that destabilize the FOXM1 protein, we found that targeting this mechanism induced G2/M cell-cycle arrest and apoptosis, blocked tumor progression, and impaired metastasis. We identified a positive correlation between FOXM1 and c-Src expression in human breast cancer and show that the expression of FOXM1 target genes predicts poor outcomes and associates with the luminal B subtype, which responds poorly to currently approved therapies. These findings revealed a regulatory network centered on c-Src and FOXM1 that is a targetable vulnerability in aggressive luminal breast cancers.

Authors

Ipshita Nandi, Harvey W. Smith, Virginie Sanguin-Gendreau, Linjia Ji, Alain Pacis, Vasilios Papavasiliou, Dongmei Zuo, Stella Nam, Sherif S. Attalla, Sung Hoon Kim, Sierra Lusson, Hellen Kuasne, Anne-Marie Fortier, Paul Savage, Constanza Martinez Ramirez, Morag Park, John A. Katzenellenbogen, Benita S. Katzenellenbogen, William J. Muller

×

Pathogenic human variant that dislocates GATA2 zinc fingers disrupts hematopoietic gene expression and signaling networks
Mabel Minji Jung, … , Sunduz Keles, Emery H. Bresnick
Mabel Minji Jung, … , Sunduz Keles, Emery H. Bresnick
Published February 21, 2023
Citation Information: J Clin Invest. 2023;133(7):e162685. https://doi.org/10.1172/JCI162685.
View: Text | PDF

Pathogenic human variant that dislocates GATA2 zinc fingers disrupts hematopoietic gene expression and signaling networks

  • Text
  • PDF
Abstract

Although certain human genetic variants are conspicuously loss of function, decoding the impact of many variants is challenging. Previously, we described a patient with leukemia predisposition syndrome (GATA2 deficiency) with a germline GATA2 variant that inserts 9 amino acids between the 2 zinc fingers (9aa-Ins). Here, we conducted mechanistic analyses using genomic technologies and a genetic rescue system with Gata2 enhancer–mutant hematopoietic progenitor cells to compare how GATA2 and 9aa-Ins function genome-wide. Despite nuclear localization, 9aa-Ins was severely defective in occupying and remodeling chromatin and regulating transcription. Variation of the inter–zinc finger spacer length revealed that insertions were more deleterious to activation than repression. GATA2 deficiency generated a lineage-diverting gene expression program and a hematopoiesis-disrupting signaling network in progenitors with reduced granulocyte-macrophage colony-stimulating factor (GM-CSF) and elevated IL-6 signaling. As insufficient GM-CSF signaling caused pulmonary alveolar proteinosis and excessive IL-6 signaling promoted bone marrow failure and GATA2 deficiency patient phenotypes, these results provide insight into mechanisms underlying GATA2-linked pathologies.

Authors

Mabel Minji Jung, Siqi Shen, Giovanni A. Botten, Thomas Olender, Koichi R. Katsumura, Kirby D. Johnson, Alexandra A. Soukup, Peng Liu, Qingzhou Zhang, Zena D. Jensvold, Peter W. Lewis, Robert A. Beagrie, Jason K.K. Low, Lihua Yang, Joel P. Mackay, Lucy A. Godley, Marjorie Brand, Jian Xu, Sunduz Keles, Emery H. Bresnick

×

Asparagine protects pericentral hepatocytes during acute liver injury
Yu Sun, … , Alessia Perino, Kristina Schoonjans
Yu Sun, … , Alessia Perino, Kristina Schoonjans
Published January 31, 2023
Citation Information: J Clin Invest. 2023;133(7):e163508. https://doi.org/10.1172/JCI163508.
View: Text | PDF

Asparagine protects pericentral hepatocytes during acute liver injury

  • Text
  • PDF
Abstract

The nonessential amino acid asparagine can only be synthesized de novo by the enzymatic activity of asparagine synthetase (ASNS). While ASNS and asparagine have been implicated in the response to numerous metabolic stressors in cultured cells, the in vivo relevance of this enzyme in stress-related pathways remains unexplored. Here, we found ASNS to be expressed in pericentral hepatocytes, a population of hepatic cells specialized in xenobiotic detoxification. ASNS expression was strongly enhanced in 2 models of acute liver injury: carbon tetrachloride (CCl4) and acetaminophen. We found that mice with hepatocyte-specific Asns deletion were more prone to pericentral liver damage than their control littermates after toxin exposure. This phenotype could be reverted by i.v. administration of asparagine. Unexpectedly, the stress-induced upregulation of ASNS involved an ATF4-independent, noncanonical pathway mediated by the nuclear receptor, liver receptor homolog 1 (LRH-1; NR5A2). Altogether, our data indicate that the induction of the asparagine-producing enzyme ASNS acts as an adaptive mechanism to constrain the necrotic wave that follows toxin administration and provide proof of concept that i.v. delivery of asparagine can dampen hepatotoxin-induced pericentral hepatocellular death.

Authors

Yu Sun, Hadrien Demagny, Adrien Faure, Francesca Pontanari, Antoine Jalil, Nadia Bresciani, Ece Yildiz, Melanie Korbelius, Alessia Perino, Kristina Schoonjans

×

The gut signals to AGRP-expressing cells of the pituitary to control glucose homeostasis
Shun-Mei Liu, … , Young Hwan Jo, Streamson Chua Jr.
Shun-Mei Liu, … , Young Hwan Jo, Streamson Chua Jr.
Published February 14, 2023
Citation Information: J Clin Invest. 2023;133(7):e164185. https://doi.org/10.1172/JCI164185.
View: Text | PDF

The gut signals to AGRP-expressing cells of the pituitary to control glucose homeostasis

  • Text
  • PDF
Abstract

Glucose homeostasis can be improved after bariatric surgery, which alters bile flow and stimulates gut hormone secretion, particularly FGF15/19. FGFR1 expression in AGRP-expressing cells is required for bile acids’ ability to improve glucose control. We show that the mouse Agrp gene has 3 promoter/enhancer regions that direct transcription of each of their own AGRP transcripts. One of these Agrp promoters/enhancers, Agrp-B, is regulated by bile acids. We generated an Agrp-B knockin FLP/knockout allele. AGRP-B–expressing cells are found in endocrine cells of the pars tuberalis and coexpress diacylglycerol lipase B — an endocannabinoid biosynthetic enzyme — distinct from pars tuberalis thyrotropes. AGRP-B expression is also found in the folliculostellate cells of the pituitary’s anterior lobe. Mice without AGRP-B were protected from glucose intolerance induced by high-fat feeding but not from excess weight gain. Chemogenetic inhibition of AGRP-B cells improved glucose tolerance by enhancing glucose-stimulated insulin secretion. Inhibition of the AGRP-B cells also caused weight loss. The improved glucose tolerance and reduced body weight persisted up to 6 weeks after cessation of the DREADD-mediated inhibition, suggesting the presence of a biological switch for glucose homeostasis that is regulated by long-term stability of food availability.

Authors

Shun-Mei Liu, Bruno Ifebi, Fred Johnson, Alison Xu, Jacquelin Ho, Yunlei Yang, Gary Schwartz, Young Hwan Jo, Streamson Chua Jr.

×

Neuron-oligodendrocyte potassium shuttling at nodes of Ranvier protects against inflammatory demyelination
Hannah Kapell, … , Sven G. Meuth, Lucas Schirmer
Hannah Kapell, … , Sven G. Meuth, Lucas Schirmer
Published January 31, 2023
Citation Information: J Clin Invest. 2023;133(7):e164223. https://doi.org/10.1172/JCI164223.
View: Text | PDF

Neuron-oligodendrocyte potassium shuttling at nodes of Ranvier protects against inflammatory demyelination

  • Text
  • PDF
Abstract

Multiple sclerosis (MS) is a progressive inflammatory demyelinating disease of the CNS. Increasing evidence suggests that vulnerable neurons in MS exhibit fatal metabolic exhaustion over time, a phenomenon hypothesized to be caused by chronic hyperexcitability. Axonal Kv7 (outward-rectifying) and oligodendroglial Kir4.1 (inward-rectifying) potassium channels have important roles in regulating neuronal excitability at and around the nodes of Ranvier. Here, we studied the spatial and functional relationship between neuronal Kv7 and oligodendroglial Kir4.1 channels and assessed the transcriptional and functional signatures of cortical and retinal projection neurons under physiological and inflammatory demyelinating conditions. We found that both channels became dysregulated in MS and experimental autoimmune encephalomyelitis (EAE), with Kir4.1 channels being chronically downregulated and Kv7 channel subunits being transiently upregulated during inflammatory demyelination. Further, we observed that pharmacological Kv7 channel opening with retigabine reduced neuronal hyperexcitability in human and EAE neurons, improved clinical EAE signs, and rescued neuronal pathology in oligodendrocyte–Kir4.1–deficient (OL-Kir4.1–deficient) mice. In summary, our findings indicate that neuron-OL compensatory interactions promoted resilience through Kv7 and Kir4.1 channels and identify pharmacological activation of nodal Kv7 channels as a neuroprotective strategy against inflammatory demyelination.

Authors

Hannah Kapell, Luca Fazio, Julia Dyckow, Sophia Schwarz, Andrés Cruz-Herranz, Christina Mayer, Joaquin Campos, Elisa D’Este, Wiebke Möbius, Christian Cordano, Anne-Katrin Pröbstel, Marjan Gharagozloo, Amel Zulji, Venu Narayanan Naik, Anna Delank, Manuela Cerina, Thomas Müntefering, Celia Lerma-Martin, Jana K. Sonner, Jung Hyung Sin, Paul Disse, Nicole Rychlik, Khalida Sabeur, Manideep Chavali, Rajneesh Srivastava, Matthias Heidenreich, Kathryn C. Fitzgerald, Guiscard Seebohm, Christine Stadelmann, Bernhard Hemmer, Michael Platten, Thomas J. Jentsch, Maren Engelhardt, Thomas Budde, Klaus-Armin Nave, Peter A. Calabresi, Manuel A. Friese, Ari J. Green, Claudio Acuna, David H. Rowitch, Sven G. Meuth, Lucas Schirmer

×

Kras oncogene ablation prevents resistance in advanced lung adenocarcinomas
Marina Salmón, … , Matthias Drosten, Mariano Barbacid
Marina Salmón, … , Matthias Drosten, Mariano Barbacid
Published March 16, 2023
Citation Information: J Clin Invest. 2023;133(7):e164413. https://doi.org/10.1172/JCI164413.
View: Text | PDF

Kras oncogene ablation prevents resistance in advanced lung adenocarcinomas

  • Text
  • PDF
Abstract

KRASG12C inhibitors have revolutionized the clinical management of patients with KRASG12C-mutant lung adenocarcinoma. However, patient exposure to these inhibitors leads to the rapid onset of resistance. In this study, we have used genetically engineered mice to compare the therapeutic efficacy and the emergence of tumor resistance between genetic ablation of mutant Kras expression and pharmacological inhibition of oncogenic KRAS activity. Whereas Kras ablation induces massive tumor regression and prevents the appearance of resistant cells in vivo, treatment of KrasG12C/Trp53-driven lung adenocarcinomas with sotorasib, a selective KRASG12C inhibitor, caused a limited antitumor response similar to that observed in the clinic, including the rapid onset of resistance. Unlike in human tumors, we did not observe mutations in components of the RAS-signaling pathways. Instead, sotorasib-resistant tumors displayed amplification of the mutant Kras allele and activation of xenobiotic metabolism pathways, suggesting that reduction of the on-target activity of KRASG12C inhibitors is the main mechanism responsible for the onset of resistance. In sum, our results suggest that resistance to KRAS inhibitors could be prevented by achieving a more robust inhibition of KRAS signaling mimicking the results obtained upon Kras ablation.

Authors

Marina Salmón, Ruth Álvarez-Díaz, Coral Fustero-Torre, Oksana Brehey, Carmen G. Lechuga, Manuel Sanclemente, Fernando Fernández-García, Alejandra López-García, María Carmen Martín-Guijarro, Sandra Rodríguez-Perales, Emily Bousquet-Mur, Lucía Morales-Cacho, Francisca Mulero, Fátima Al-Shahrour, Lola Martínez, Orlando Domínguez, Eduardo Caleiras, Sagrario Ortega, Carmen Guerra, Monica Musteanu, Matthias Drosten, Mariano Barbacid

×

Decitabine priming increases anti–PD-1 antitumor efficacy by promoting CD8+ progenitor exhausted T cell expansion in tumor models
Xiang Li, … , Weidong Han, Jing Nie
Xiang Li, … , Weidong Han, Jing Nie
Published February 28, 2023
Citation Information: J Clin Invest. 2023;133(7):e165673. https://doi.org/10.1172/JCI165673.
View: Text | PDF

Decitabine priming increases anti–PD-1 antitumor efficacy by promoting CD8+ progenitor exhausted T cell expansion in tumor models

  • Text
  • PDF
Abstract

CD8+ exhausted T cells (Tex) are heterogeneous. PD-1 inhibitors reinvigorate progenitor Tex, which subsequently differentiate into irresponsive terminal Tex. The ability to maintain a capacity for durable proliferation of progenitor Tex is important, but the mechanism remains unclear. Here, we showed CD8+ progenitor Tex pretreated with decitabine, a low-dose DNA demethylating agent, had enhanced proliferation and effector function against tumors after anti–PD-1 treatment in vitro. Treatment with decitabine plus anti–PD-1 promoted the activation and expansion of tumor-infiltrated CD8+ progenitor Tex and efficiently suppressed tumor growth in multiple tumor models. Transcriptional and epigenetic profiling of tumor-infiltrated T cells demonstrated that the combination of decitabine plus anti–PD-1 markedly elevated the clonal expansion and cytolytic activity of progenitor Tex compared with anti–PD-1 monotherapy and restrained CD8+ T cell terminal differentiation. Strikingly, decitabine plus anti–PD-1 sustained the expression and activity of the AP-1 transcription factor JunD, which was reduced following PD-1 blockade therapy. Downregulation of JunD repressed T cell proliferation, and activation of JNK/AP-1 signaling in CD8+ T cells enhanced the antitumor capacity of PD-1 inhibitors. Together, epigenetic agents remodel CD8+ progenitor Tex populations and improve responsiveness to anti–PD-1 therapy.

Authors

Xiang Li, Yaru Li, Liang Dong, Yixin Chang, Xingying Zhang, Chunmeng Wang, Meixia Chen, Xiaochen Bo, Hebing Chen, Weidong Han, Jing Nie

×

EMT-activated secretory and endocytic vesicular trafficking programs underlie a vulnerability to PI4K2A antagonism in lung cancer
Xiaochao Tan, … , Chad J. Creighton, Jonathan M. Kurie
Xiaochao Tan, … , Chad J. Creighton, Jonathan M. Kurie
Published February 9, 2023
Citation Information: J Clin Invest. 2023;133(7):e165863. https://doi.org/10.1172/JCI165863.
View: Text | PDF

EMT-activated secretory and endocytic vesicular trafficking programs underlie a vulnerability to PI4K2A antagonism in lung cancer

  • Text
  • PDF
Abstract

Hypersecretory malignant cells underlie therapeutic resistance, metastasis, and poor clinical outcomes. However, the molecular basis for malignant hypersecretion remains obscure. Here, we showed that epithelial-mesenchymal transition (EMT) initiates exocytic and endocytic vesicular trafficking programs in lung cancer. The EMT-activating transcription factor zinc finger E-box–binding homeobox 1 (ZEB1) executed a PI4KIIIβ-to-PI4KIIα (PI4K2A) dependency switch that drove PI4P synthesis in the Golgi and endosomes. EMT enhanced the vulnerability of lung cancer cells to PI4K2A small-molecule antagonists. PI4K2A formed a MYOIIA-containing protein complex that facilitated secretory vesicle biogenesis in the Golgi, thereby establishing a hypersecretory state involving osteopontin (SPP1) and other prometastatic ligands. In the endosomal compartment, PI4K2A accelerated recycling of SPP1 receptors to complete an SPP1-dependent autocrine loop and interacted with HSP90 to prevent lysosomal degradation of AXL receptor tyrosine kinase, a driver of cell migration. These results show that EMT coordinates exocytic and endocytic vesicular trafficking to establish a therapeutically actionable hypersecretory state that drives lung cancer progression.

Authors

Xiaochao Tan, Guan-Yu Xiao, Shike Wang, Lei Shi, Yanbin Zhao, Xin Liu, Jiang Yu, William K. Russell, Chad J. Creighton, Jonathan M. Kurie

×

Integrated host/microbe metagenomics enables accurate lower respiratory tract infection diagnosis in critically ill children
Eran Mick, … , Peter M. Mourani, Charles R. Langelier
Eran Mick, … , Peter M. Mourani, Charles R. Langelier
Published April 3, 2023
Citation Information: J Clin Invest. 2023;133(7):e165904. https://doi.org/10.1172/JCI165904.
View: Text | PDF Clinical Research and Public Health

Integrated host/microbe metagenomics enables accurate lower respiratory tract infection diagnosis in critically ill children

  • Text
  • PDF
Abstract

BACKGROUND Lower respiratory tract infection (LRTI) is a leading cause of death in children worldwide. LRTI diagnosis is challenging because noninfectious respiratory illnesses appear clinically similar and because existing microbiologic tests are often falsely negative or detect incidentally carried microbes, resulting in antimicrobial overuse and adverse outcomes. Lower airway metagenomics has the potential to detect host and microbial signatures of LRTI. Whether it can be applied at scale and in a pediatric population to enable improved diagnosis and treatment remains unclear.METHODS We used tracheal aspirate RNA-Seq to profile host gene expression and respiratory microbiota in 261 children with acute respiratory failure. We developed a gene expression classifier for LRTI by training on patients with an established diagnosis of LRTI (n = 117) or of noninfectious respiratory failure (n = 50). We then developed a classifier that integrates the host LRTI probability, abundance of respiratory viruses, and dominance in the lung microbiome of bacteria/fungi considered pathogenic by a rules-based algorithm.RESULTS The host classifier achieved a median AUC of 0.967 by cross-validation, driven by activation markers of T cells, alveolar macrophages, and the interferon response. The integrated classifier achieved a median AUC of 0.986 and increased the confidence of patient classifications. When applied to patients with an uncertain diagnosis (n = 94), the integrated classifier indicated LRTI in 52% of cases and nominated likely causal pathogens in 98% of those.CONCLUSION Lower airway metagenomics enables accurate LRTI diagnosis and pathogen identification in a heterogeneous cohort of critically ill children through integration of host, pathogen, and microbiome features.FUNDING Support for this study was provided by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and the National Heart, Lung, and Blood Institute (UG1HD083171, 1R01HL124103, UG1HD049983, UG01HD049934, UG1HD083170, UG1HD050096, UG1HD63108, UG1HD083116, UG1HD083166, UG1HD049981, K23HL138461, and 5R01HL155418) as well as by the Chan Zuckerberg Biohub.

Authors

Eran Mick, Alexandra Tsitsiklis, Jack Kamm, Katrina L. Kalantar, Saharai Caldera, Amy Lyden, Michelle Tan, Angela M. Detweiler, Norma Neff, Christina M. Osborne, Kayla M. Williamson, Victoria Soesanto, Matthew Leroue, Aline B. Maddux, Eric A.F. Simões, Todd C. Carpenter, Brandie D. Wagner, Joseph L. DeRisi, Lilliam Ambroggio, Peter M. Mourani, Charles R. Langelier

×

Glycolysis drives STING signaling to facilitate dendritic cell antitumor function
Zhilin Hu, … , Jiayuan Sun, Qiang Zou
Zhilin Hu, … , Jiayuan Sun, Qiang Zou
Published February 23, 2023
Citation Information: J Clin Invest. 2023;133(7):e166031. https://doi.org/10.1172/JCI166031.
View: Text | PDF

Glycolysis drives STING signaling to facilitate dendritic cell antitumor function

  • Text
  • PDF
Abstract

Activation of STING signaling in DCs promotes antitumor immunity. Aerobic glycolysis is a metabolic hallmark of activated DCs, but how the glycolytic pathway intersects with STING signaling in tumor-infiltrating DCs remains elusive. Here, we show that glycolysis drives STING signaling to facilitate DC-mediated antitumor immune responses. Tumor-infiltrating DCs exhibited elevated glycolysis, and blockade of glycolysis by DC-specific Ldha/Ldhb double deletion resulted in defective antitumor immunity. Mechanistically, glycolysis augmented ATP production to boost STING activation and STING-dependent DC antitumor functions. Moreover, DC-intrinsic STING activation accelerated HIF-1α–mediated glycolysis and established a positive feedback loop. Importantly, glycolysis facilitated STING-dependent DC activity in tissue samples from patients with non–small cell lung cancer. Our results provide mechanistic insight into how the crosstalk of glycolytic metabolism and STING signaling enhances DC antitumor activity and can be harnessed to improve cancer therapies.

Authors

Zhilin Hu, Xiaoyan Yu, Rui Ding, Ben Liu, Chuanjia Gu, Xiu-Wu Pan, Qiaoqiao Han, Yuerong Zhang, Jie Wan, Xin-Gang Cui, Jiayuan Sun, Qiang Zou

×
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts