Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
ER-to-Golgi transport and SEC23-dependent COPII vesicles regulate T cell alloimmunity
Stephanie Kim, Rami Khoriaty, Lu Li, Madison McClune, Theodosia A. Kalfa, Julia Wu, Daniel Peltier, Hideaki Fujiwara, Yaping Sun, Katherine Oravecz-Wilson, Richard A. King, David Ginsburg, Pavan Reddy
Stephanie Kim, Rami Khoriaty, Lu Li, Madison McClune, Theodosia A. Kalfa, Julia Wu, Daniel Peltier, Hideaki Fujiwara, Yaping Sun, Katherine Oravecz-Wilson, Richard A. King, David Ginsburg, Pavan Reddy
View: Text | PDF
Research Article Cell biology Immunology

ER-to-Golgi transport and SEC23-dependent COPII vesicles regulate T cell alloimmunity

  • Text
  • PDF
Abstract

T cell–mediated responses are dependent on their secretion of key effector molecules. However, the critical molecular determinants of the secretion of these proteins are largely undefined. Here, we demonstrate that T cell activation increases trafficking via the ER-to-Golgi pathway. To study the functional role of this pathway, we generated mice with a T cell–specific deletion in SEC23B, a core subunit of coat protein complex II (COPII). We found that SEC23B critically regulated the T cell secretome following activation. SEC23B-deficient T cells exhibited a proliferative defect and reduced effector functions in vitro, as well as in experimental models of allogeneic and xenogeneic hematopoietic cell transplantation in vivo. However, T cells derived from 3 patients with congenital dyserythropoietic anemia II (CDAII), which results from Sec23b mutation, did not exhibit a similar phenotype. Mechanistic studies demonstrated that unlike murine KO T cells, T cells from patients with CDAII harbor increased levels of the closely related paralog, SEC23A. In vivo rescue of murine KO by expression of Sec23a from the Sec23b genomic locus restored T cell functions. Together, our data demonstrate a critical role for the COPII pathway, with evidence for functional overlap in vivo between SEC23 paralogs in the regulation of T cell immunity in both mice and humans.

Authors

Stephanie Kim, Rami Khoriaty, Lu Li, Madison McClune, Theodosia A. Kalfa, Julia Wu, Daniel Peltier, Hideaki Fujiwara, Yaping Sun, Katherine Oravecz-Wilson, Richard A. King, David Ginsburg, Pavan Reddy

×
Problems with a PDF?

This file is in Adobe Acrobat (PDF) format. If you have not installed and configured the Adobe Acrobat Reader on your system.

Having trouble reading a PDF?

PDFs are designed to be printed out and read, but if you prefer to read them online, you may find it easier if you increase the view size to 125%.

Having trouble saving a PDF?

Many versions of the free Acrobat Reader do not allow Save. You must instead save the PDF from the JCI Online page you downloaded it from. PC users: Right-click on the Download link and choose the option that says something like "Save Link As...". Mac users should hold the mouse button down on the link to get these same options.

Having trouble printing a PDF?

  1. Try printing one page at a time or to a newer printer.
  2. Try saving the file to disk before printing rather than opening it "on the fly." This requires that you configure your browser to "Save" rather than "Launch Application" for the file type "application/pdf", and can usually be done in the "Helper Applications" options.
  3. Make sure you are using the latest version of Adobe's Acrobat Reader.

Supplemental data - Download (2.51 MB)

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts