Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
MICAL1 constrains cardiac stress responses and protects against disease by oxidizing CaMKII
Klitos Konstantinidis, … , Rodney L. Levine, Mark E. Anderson
Klitos Konstantinidis, … , Rodney L. Levine, Mark E. Anderson
Published August 4, 2020
Citation Information: J Clin Invest. 2020;130(9):4663-4678. https://doi.org/10.1172/JCI133181.
View: Text | PDF
Research Article Cardiology Cell biology

MICAL1 constrains cardiac stress responses and protects against disease by oxidizing CaMKII

  • Text
  • PDF
Abstract

Oxidant stress can contribute to health and disease. Here we show that invertebrates and vertebrates share a common stereospecific redox pathway that protects against pathological responses to stress, at the cost of reduced physiological performance, by constraining Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity. MICAL1, a methionine monooxygenase thought to exclusively target actin, and MSRB, a methionine reductase, control the stereospecific redox status of M308, a highly conserved residue in the calmodulin-binding (CaM-binding) domain of CaMKII. Oxidized or mutant M308 (M308V) decreased CaM binding and CaMKII activity, while absence of MICAL1 in mice caused cardiac arrhythmias and premature death due to CaMKII hyperactivation. Mimicking the effects of M308 oxidation decreased fight-or-flight responses in mice, strikingly impaired heart function in Drosophila melanogaster, and caused disease protection in human induced pluripotent stem cell–derived cardiomyocytes with catecholaminergic polymorphic ventricular tachycardia, a CaMKII-sensitive genetic arrhythmia syndrome. Our studies identify a stereospecific redox pathway that regulates cardiac physiological and pathological responses to stress across species.

Authors

Klitos Konstantinidis, Vassilios J. Bezzerides, Lo Lai, Holly M. Isbell, An-Chi Wei, Yuejin Wu, Meera C. Viswanathan, Ian D. Blum, Jonathan M. Granger, Danielle Heims-Waldron, Donghui Zhang, Elizabeth D. Luczak, Kevin R. Murphy, Fujian Lu, Daniel H. Gratz, Bruno Manta, Qiang Wang, Qinchuan Wang, Alex L. Kolodkin, Vadim N. Gladyshev, Thomas J. Hund, William T. Pu, Mark N. Wu, Anthony Cammarato, Mario A. Bianchet, Madeline A. Shea, Rodney L. Levine, Mark E. Anderson

×

Full Text PDF | Download (5.97 MB)


Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts