Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
A distinct subset of FcγRI-expressing Th1 cells exert antibody-mediated cytotoxic activity
Diana Rasoulouniriana, … , Peleg Rider, Yaron Carmi
Diana Rasoulouniriana, … , Peleg Rider, Yaron Carmi
Published August 26, 2019
Citation Information: J Clin Invest. 2019;129(10):4151-4164. https://doi.org/10.1172/JCI127590.
View: Text | PDF
Research Article Immunology Therapeutics

A distinct subset of FcγRI-expressing Th1 cells exert antibody-mediated cytotoxic activity

  • Text
  • PDF
Abstract

While a high frequency of Th1 cells in tumors is associated with improved cancer prognosis, this benefit has been attributed mainly to support of cytotoxic activity of CD8+ T cells. By attempting to potentiate antibody-driven immunity, we found a remarkable synergy between CD4+ T cells and tumor-binding antibodies. This surprising synergy was mediated by a small subset of tumor-infiltrating CD4+ T cells that express the high-affinity Fcγ receptor for IgG (FcγRI) in both mouse and human patients. These cells efficiently lyse tumor cells coated with antibodies through concomitant crosslinking of their T cell receptor (TCR) and FcγRI. By expressing FcγRI and its signaling chain in conventional CD4+ T cells, we successfully employed this mechanism to treat established solid cancers. Overall, this discovery sheds new light on the biology of this T cell subset, their function during tumor immunity, and the means to utilize their unique killing signals in immunotherapy.

Authors

Diana Rasoulouniriana, Nadine Santana-Magal, Amit Gutwillig, Leen Farhat-Younis, Yariv Wine, Corey Saperia, Lior Tal, Haim Gutman, Alexander Tsivian, Ronen Brenner, Eiman Abu Bandora, Nathan E. Reticker-Flynn, Peleg Rider, Yaron Carmi

×

Full Text PDF | Download (11.26 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts