Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Inhibitors of JAK in myeloproliferative neoplasms
  • Boosting JAK inhibition for effective treatment of myeloproliferative neoplasms
  • JAK/ERK inhibition: a roadmap for a wider cancer treatment regimen
  • Acknowledgments
  • Footnotes
  • References
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Commentary Free access | 10.1172/JCI127582

Pairing JAK with MEK for improved therapeutic efficiency in myeloproliferative disorders

David A. Williams

Harvard Medical School, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA.

Address correspondence to: David A. Williams, Leland Fikes Chair of Pediatrics, Harvard Medical School, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, 300 Longwood Ave. Karp 08125.3, Boston, Massachusetts 02115, USA. Phone: 617.919.2697; Email: DAWilliams@childrens.harvard.edu.

Find articles by Williams, D. in: PubMed | Google Scholar

Published March 4, 2019 - More info

Published in Volume 129, Issue 4 on April 1, 2019
J Clin Invest. 2019;129(4):1519–1521. https://doi.org/10.1172/JCI127582.
© 2019 American Society for Clinical Investigation
Published March 4, 2019 - Version history
View PDF

Related article:

Targeting compensatory MEK/ERK activation increases JAK inhibitor efficacy in myeloproliferative neoplasms
Simona Stivala, … , Ross L. Levine, Sara C. Meyer
Simona Stivala, … , Ross L. Levine, Sara C. Meyer
Research Article Hematology Oncology

Targeting compensatory MEK/ERK activation increases JAK inhibitor efficacy in myeloproliferative neoplasms

  • Text
  • PDF
Abstract

Constitutive JAK2 signaling is central to myeloproliferative neoplasm (MPN) pathogenesis and results in activation of STAT, PI3K/AKT, and MEK/ERK signaling. However, the therapeutic efficacy of current JAK2 inhibitors is limited. We investigated the role of MEK/ERK signaling in MPN cell survival in the setting of JAK inhibition. Type I and II JAK2 inhibition suppressed MEK/ERK activation in MPN cell lines in vitro, but not in Jak2V617F and MPLW515L mouse models in vivo. JAK2 inhibition ex vivo inhibited MEK/ERK signaling, suggesting that cell-extrinsic factors maintain ERK activation in vivo. We identified PDGFRα as an activated kinase that remains activated upon JAK2 inhibition in vivo, and PDGF-AA/PDGF-BB production persisted in the setting of JAK inhibition. PDGF-BB maintained ERK activation in the presence of ruxolitinib, consistent with its function as a ligand-induced bypass for ERK activation. Combined JAK/MEK inhibition suppressed MEK/ERK activation in Jak2V617F and MPLW515L mice with increased efficacy and reversal of fibrosis to an extent not seen with JAK inhibitors. This demonstrates that compensatory ERK activation limits the efficacy of JAK2 inhibition and dual JAK/MEK inhibition provides an opportunity for improved therapeutic efficacy in MPNs and in other malignancies driven by aberrant JAK-STAT signaling.

Authors

Simona Stivala, Tamara Codilupi, Sime Brkic, Anne Baerenwaldt, Nilabh Ghosh, Hui Hao-Shen, Stephan Dirnhofer, Matthias S. Dettmer, Cedric Simillion, Beat A. Kaufmann, Sophia Chiu, Matthew Keller, Maria Kleppe, Morgane Hilpert, Andreas S. Buser, Jakob R. Passweg, Thomas Radimerski, Radek C. Skoda, Ross L. Levine, Sara C. Meyer

×

Abstract

The identification of JAK2 mutations as disease-initiating in myeloproliferative neoplasms (MPNs) has led to new and effective therapies for these diseases. In a study published in this issue of the JCI, Stivala et al. explored the key observation that JAK inhibition successfully suppresses MAPK activation in MPN cell lines and primary MPN cells in vitro, and the finding that it failed to completely and effectively suppress MAPK activation in vivo in two mouse models. The authors went on to show that dual inhibition of JAK and the MAP kinase pathway provided enhanced therapeutic efficacy in the in vivo models of MPN.

Inhibitors of JAK in myeloproliferative neoplasms

Myeloproliferative neoplasms (MPNs) are disorders of hematopoietic stem cells associated with activated JAK/STAT signaling and present with chronic excessive production of myeloid cells. These include excessive red cell production as seen in polycythemia vera (PV), excessive platelet production as in essential thrombocythemia (ET), and excessive megakaryocytes and bone marrow fibrosis as in myelofibrosis (MF) (1). These chronic conditions have a risk of further transformation to acute leukemias that are typically highly refractory to chemotherapy. Currently, the only therapy with curative potential for MPN is hematopoietic stem cell transplantation (HSCT); however, this approach is limited by regimen-related toxicities that are particularly prevalent in the older population, the group most affected by MPNs. Identification of JAK2 mutations (2–5) as disease-initiating in MPN has led to new and effective therapies for these diseases. For instance, ruxolitinib, a molecularly targeted inhibitor of JAK1/JAK2, is now FDA approved for the treatment of intermediate- or high-risk myelofibrosis and PV in patients who are resistant to or intolerant of hydroxyurea, one of the most commonly used agents in MPN patients.

JAK2 is a non–receptor tyrosine kinase that is required for normal blood cell development. The efficacy of current JAK2 inhibitors is limited. Current JAK2 inhibitors are not strongly selective for the JAK2-mutant cells, and, as a result, molecular remissions are not common (6). Furthermore, a substantial portion of patients with myelofibrosis come off treatment as a result of disease progression and/or toxicity. Earlier work has suggested that a mechanism of resistance to JAK2 inhibitors is a result of continued dysregulation in JAK2 activation and downstream signaling activities (7). In addition to constitutive activating JAK2 mutations, mutations in the thrombopoietin receptor MPL and in the ER chaperone protein calreticulin (CALR) are disease-initiating in MPNs, and each of these so-called MPN phenotypic driver mutations leads to activation of MPL/JAK2 cytokine signaling (8), resulting in the activation of downstream targets including STATs, AKT/PI3K, and the MAPK pathway (Figure 1). The MAPK pathway is complex and, importantly, downstream of RAS, a GTPase implicated in a large fraction of cancers and some leukemias (9). The MAPK pathway includes the kinases RAF, ERK1/2, and MEK1/2, with activated ERK leading to specific activation of downstream MEK as a target. Inhibitors of this pathway are in clinical development for other cancers, including RAS-mutated leukemias.

Inhibiting the JAK pathway in MPN.Figure 1

Inhibiting the JAK pathway in MPN. (A and B) Ex vivo inhibition strategy. Activation of the JAK pathway leads to enhanced cell proliferation, a hallmark of MPN. JAK2 inhibition ex vivo inhibits MEK/ERK signaling, ultimately leading to a reduction in cell proliferation. (C and D) In vivo inhibition strategy. JAK2 inhibitors are not able to induce molecular remissions in vivo. JAK2-independent compensatory activation of the MEK/ERK signaling pathway is attributed to activated PDGFR. Combined targeting of JAK2 and MEK inhibits ERK activation and reduces cell proliferation in vivo. MPLR, thrombopoietin receptor. Figure illustrated by Rachel Davidowitz.

Boosting JAK inhibition for effective treatment of myeloproliferative neoplasms

In a study published in this issue of the JCI, Stivala et al. (10) explore a key observation that ruxolitinib treatment inhibited JAK/STAT and ERK activation in MPN cell lines and even primary MPN cells in vitro but failed to completely inhibit ERK activation effectively in vivo in two mouse models. They noted in particular that JAK2 inhibition in vivo failed to effectively inhibit the activation of the MAPK pathway, and surmised that this difference could represent a non-cell-autonomous effect of the in vivo tumor microenvironment and, importantly, offer an additional therapeutic target. The authors went on to show that dual inhibition of JAK and the MAPK pathway prevented the persistent activation of MEK in the presence of JAK2 inhibition in vivo and provided enhanced therapeutic efficacy in the in vivo models of MPN. This was particularly noteworthy for the myelofibrosis associated with MPN.

Mechanistically, using orthogonal approaches of mRNA and protein analysis, the authors demonstrated that PDGFRα is activated in these in vivo MPN models and that activated PDGFRα is responsible for persistent MEK activation in the presence of effective JAK inhibition. Interestingly, PDGF, which signals through PDGFRα, is present in the hematopoietic microenvironment of the bone marrow and has been previously implicated in the development of myelofibrosis (11), providing a satisfying potential mechanistic linkage to the efficacy seen with inhibition of the MAPK pathway and the myelofibrosis phenotype of MPN. The authors demonstrated persistent levels of PDGF even with effective JAK2 inhibition in vivo, supporting its potential role in the activation of the MAPK pathway in MPN and the lack of efficacy of monotherapy with JAK2 inhibition.

JAK/ERK inhibition: a roadmap for a wider cancer treatment regimen

Overall, these studies suggest that compensatory ERK activation limits the efficacy of JAK2 inhibition in MPN models in vivo and that dual JAK/MEK inhibition provides an opportunity for improved therapeutic efficacy. These studies imply that additional knowledge of targeted therapies can be ascertained from in vivo models and these may be critical to understanding resistant disease or relapse in the setting of these therapies. Several unanswered questions remain to be explored. A key one is whether combination therapy, when applied to humans with MPNs, is associated with increased efficacy and/or is limited by excessive side effects. In addition, the cell-autonomous versus tumor microenvironment role of PDGF, which is expressed in both hematopoietic cells and bone marrow stromal cells, is not yet completely clear. Finally, the potential role of compensatory ERK/MEK signaling as a more general mechanism of tumor resistance to targeted therapies in other cancers needs to be studied to determine the relevance of these findings in other clinical situations with unmet medical need.

Acknowledgments

I thank Ann Mullally and Scott Armstrong for helpful discussions.

Address correspondence to: David A. Williams, Leland Fikes Chair of Pediatrics, Harvard Medical School, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, 300 Longwood Ave. Karp 08125.3, Boston, Massachusetts 02115, USA. Phone: 617.919.2697; Email: DAWilliams@childrens.harvard.edu.

Footnotes

Conflict of interest: The author has declared that no conflict of interest exists.

Copyright: © 2019 American Society for Clinical Investigation

Reference information: J Clin Invest. 2019;129(4):1519–1521. https://doi.org/10.1172/JCI127582.

See the related article at Targeting compensatory MEK/ERK activation increases JAK inhibitor efficacy in myeloproliferative neoplasms.

References
  1. Spivak JL. Myeloproliferative neoplasms. N Engl J Med. 2017;377(9):895–896.
    View this article via: PubMed CrossRef Google Scholar
  2. Kralovics R, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352(17):1779–1790.
    View this article via: PubMed CrossRef Google Scholar
  3. Levine RL, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7(4):387–397.
    View this article via: PubMed CrossRef Google Scholar
  4. Baxter EJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365(9464):1054–1061.
    View this article via: PubMed CrossRef Google Scholar
  5. James C, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434(7037):1144–1148.
    View this article via: PubMed CrossRef Google Scholar
  6. Mead AJ, Mullally A. Myeloproliferative neoplasm stem cells. Blood. 2017;129(12):1607–1616.
    View this article via: PubMed CrossRef Google Scholar
  7. Koppikar P, et al. Heterodimeric JAK-STAT activation as a mechanism of persistence to JAK2 inhibitor therapy. Nature. 2012;489(7414):155–159.
    View this article via: PubMed CrossRef Google Scholar
  8. Rampal R, et al. Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis. Blood. 2014;123(22):e123–e133.
    View this article via: PubMed CrossRef Google Scholar
  9. Burotto M, Chiou VL, Lee JM, Kohn EC. The MAPK pathway across different malignancies: a new perspective. Cancer. 2014;120(22):3446–3456.
    View this article via: PubMed CrossRef Google Scholar
  10. Stivala S, et al. Targeting compensatory MEK/ERK activation increases JAK inhibitor efficacy in myeloproliferative neoplasms. J Clin Invest. 2019;129(4):1596–1611.
    View this article via: JCI PubMed Google Scholar
  11. Demoulin JB, Montano-Almendras CP. Platelet-derived growth factors and their receptors in normal and malignant hematopoiesis. Am J Blood Res. 2012;2(1):44–56.
    View this article via: PubMed Google Scholar
Version history
  • Version 1 (March 4, 2019): Electronic publication
  • Version 2 (April 1, 2019): Print issue publication

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Inhibitors of JAK in myeloproliferative neoplasms
  • Boosting JAK inhibition for effective treatment of myeloproliferative neoplasms
  • JAK/ERK inhibition: a roadmap for a wider cancer treatment regimen
  • Acknowledgments
  • Footnotes
  • References
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts