Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
TLR-stimulated IRAKM activates caspase-8 inflammasome in microglia and promotes neuroinflammation
Cun-Jin Zhang, … , Richard M. Ransohoff, Xiaoxia Li
Cun-Jin Zhang, … , Richard M. Ransohoff, Xiaoxia Li
Published October 29, 2018
Citation Information: J Clin Invest. 2018;128(12):5399-5412. https://doi.org/10.1172/JCI121901.
View: Text | PDF
Research Article Autoimmunity Inflammation

TLR-stimulated IRAKM activates caspase-8 inflammasome in microglia and promotes neuroinflammation

  • Text
  • PDF
Abstract

NLRP3 inflammasome plays a critical spatiotemporal role in the pathogenesis of experimental autoimmune encephalomyelitis (EAE). This study reports a mechanistic insight into noncanonical NLRP3 inflammasome activation in microglia for the effector stage of EAE. Microglia-specific deficiency of ASC (apoptosis-associated speck-like protein containing a C-terminal caspase-activation and recruitment [CARD] domain) attenuated T cell expansion and neutrophil recruitment during EAE pathogenesis. Mechanistically, TLR stimulation led to IRAKM–caspase-8–ASC complex formation, resulting in the activation of caspase-8 and IL-1β release in microglia. Noncanonical inflammasome-derived IL-1β produced by microglia in the CNS helped to expand the microglia population in an autocrine manner and amplified the production of inflammatory cytokines/chemokines. Furthermore, active caspase-8 was markedly increased in the microglia in the brain tissue from patients with multiple sclerosis. Taken together, our study suggests that microglia-derived IL-1β via noncanonical caspase-8–dependent inflammasome is necessary for microglia to exert their pathogenic role during CNS inflammation.

Authors

Cun-Jin Zhang, Meiling Jiang, Hao Zhou, Weiwei Liu, Chenhui Wang, Zizhen Kang, Bing Han, Quanri Zhang, Xing Chen, Jianxin Xiao, Amanda Fisher, William J. Kaiser, Masanori A. Murayama, Yoichiro Iwakura, Ji Gao, Julie Carman, Ashok Dongre, George Dubyak, Derek W. Abbott, Fu-Dong Shi, Richard M. Ransohoff, Xiaoxia Li

×

Figure 5

Dynamics of caspase-8 activation, IL-1β production, and IL-1R expression in microglia.

Options: View larger image (or click on image) Download as PowerPoint
Dynamics of caspase-8 activation, IL-1β production, and IL-1R expression...
(A and B) Analysis of results for WT→ASCfl/+Cx3cr1Cre-ER (ASCΔWT) bone marrow chimeric mice in EAE disease. Flow cytometry analysis of activated caspase-8 in primary EYFP+ microglia isolated from brains of EAE mice at the indicated time points (n = 4). The quantification of activated caspase8+ microglia is shown in B. (C and D) Brain specimens of 7 controls and 11 MS cases were provided by the Multiple Sclerosis Tissue Bank at Imperial College London. The edges of cortical active lesions in brain slices were stained with the indicated antibodies against microglia markers TMEM119 and activated caspase-8–FLICA. Scale bars: 50 μm (C). The activated caspase-8+ cells were quantified (D). (E) EFYP+ primary microglia sorted from EAE mice (ASCΔWT) at the indicated times was cultured overnight and supernatant was subjected to ELISA analysis of IL-1β production (n = 4). (F) FACS analysis of IL-1R expression in EFYP+ primary microglia isolated from brains of WT naive and EAE mice (ASCΔWT) (n = 4). Data are representative of 2 independent experiments; mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 (unpaired 2-tailed Student’s t test).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts