Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Issue published December 3, 2018 Previous issue | Next issue

  • Volume 128, Issue 12
Go to section:
  • Viewpoints
  • Commentaries
  • Research Articles
  • Retraction
  • Erratum

On the cover: Fractal analysis reveals complex airway geometry

In this issue of the JCI, Bodduluri et al. demonstrate that characterizing airway branching complexity and remodeling using fractal dimensions can provide prognostic information that associates closely with measurements of COPD progression, including lung function decline and mortality. This approach may provide important clinical insights into the mechanisms underlying progression of COPD and other respiratory diseases. This issue’s cover illustrates the branching airways of a smoker without airflow obstruction.

Viewpoints
NIH Career Development Awards: conversion to research grants and regional distribution
Marisa L. Conte, M. Bishr Omary
Marisa L. Conte, M. Bishr Omary
Published October 29, 2018
Citation Information: J Clin Invest. 2018;128(12):5187-5190. https://doi.org/10.1172/JCI123875.
View: Text | PDF

NIH Career Development Awards: conversion to research grants and regional distribution

  • Text
  • PDF
Abstract

Authors

Marisa L. Conte, M. Bishr Omary

×

Mitochondrial transplantation in humans: “magical” cure or cause for concern?
Edoardo Bertero, … , Christoph Maack, Brian O’Rourke
Edoardo Bertero, … , Christoph Maack, Brian O’Rourke
Published October 29, 2018
Citation Information: J Clin Invest. 2018;128(12):5191-5194. https://doi.org/10.1172/JCI124944.
View: Text | PDF

Mitochondrial transplantation in humans: “magical” cure or cause for concern?

  • Text
  • PDF
Abstract

Authors

Edoardo Bertero, Christoph Maack, Brian O’Rourke

×
Commentaries
Ushering in the cardiac role of Ubiquilin1
Xi Fang, … , Christa Trexler, Ju Chen
Xi Fang, … , Christa Trexler, Ju Chen
Published October 22, 2018
Citation Information: J Clin Invest. 2018;128(12):5195-5197. https://doi.org/10.1172/JCI124567.
View: Text | PDF

Ushering in the cardiac role of Ubiquilin1

  • Text
  • PDF
Abstract

Protein quality control (PQC) mechanisms are essential for maintaining cardiac function, and alterations in this pathway influence multiple forms of heart disease. Since heart disease is the leading cause of death worldwide, understanding how the delicate balance between protein synthesis and degradation is regulated in the heart demands attention. The study by Hu et al. reveals that the extraproteasomal ubiquitin receptor Ubiquilin1 (Ubqln1) plays an important role in cardiac ubiquitination-proteasome coupling, particularly in response to myocardial ischemia/reperfusion injury, thereby suggesting that this may be a new avenue for therapeutics.

Authors

Xi Fang, Christa Trexler, Ju Chen

×

Therapeutic potential of carbonyl-scavenging carnosine derivative in metabolic disorders
Jacob M. Haus, John P. Thyfault
Jacob M. Haus, John P. Thyfault
Published October 22, 2018
Citation Information: J Clin Invest. 2018;128(12):5198-5200. https://doi.org/10.1172/JCI124304.
View: Text | PDF

Therapeutic potential of carbonyl-scavenging carnosine derivative in metabolic disorders

  • Text
  • PDF
Abstract

Obesity and overnutrition increase levels of reactive sugar- and lipid-derived aldehydes called reactive carbonyl species (RCS). Increased tissue and circulating RCS levels have been tied to insulin resistance and inflammation, but previous pharmacological approaches to target RCS have had equivocal outcomes. In this issue of the JCI, Anderson et al. present evidence for the development and implementation of carnisonol, a compound that is biologically stable in vivo and shows impressive effects on improving metabolism and inflammation in rodent models of diet-induced obesity and metabolic dysfunction.

Authors

Jacob M. Haus, John P. Thyfault

×

Histamine and deep brain stimulation: the pharmacology of regularizing a brain
Timothy C. Whalen, Aryn H. Gittis
Timothy C. Whalen, Aryn H. Gittis
Published October 29, 2018
Citation Information: J Clin Invest. 2018;128(12):5201-5202. https://doi.org/10.1172/JCI124777.
View: Text | PDF

Histamine and deep brain stimulation: the pharmacology of regularizing a brain

  • Text
  • PDF
Abstract

Parkinson’s disease (PD) patients have increased histamine in their basal ganglia, but the role of this neurotransmitter in PD is poorly understood. In this issue of the JCI, Zhuang et al. demonstrate that histamine levels rise in the subthalamic nucleus (STN) to compensate for abnormal firing patterns. Injection of histamine into the STN restores normal firing patterns and motor activity, whereas merely changing firing rates has no behavioral effect. Moreover, STN deep brain stimulation, a widespread therapy for PD, regularizes firing through endogenous histamine release. This suggests that abnormal firing patterns, rather than rates, cause PD symptoms, and this histaminergic pathway may lead to new treatments for the disease.

Authors

Timothy C. Whalen, Aryn H. Gittis

×

Seeing the forest for the trees: fractal dimensions measure COPD airway remodeling
Eleanor M. Dunican
Eleanor M. Dunican
Published October 29, 2018
Citation Information: J Clin Invest. 2018;128(12):5203-5205. https://doi.org/10.1172/JCI124776.
View: Text | PDF

Seeing the forest for the trees: fractal dimensions measure COPD airway remodeling

  • Text
  • PDF
Abstract

Chronic obstructive pulmonary disease (COPD) is extremely heterogenous in its effects on airway remodeling. Parsing the complex and interrelated morphologic changes and understanding their contribution to disease severity has posed a significant challenge to the field. In the current issue of the JCI, Bodduluri et al. measured the complex effects of COPD on the airway tree using airway fractal dimension (AFD) on computerized tomography in a large cohort of smokers with and without COPD. They found that lower AFD was independently associated with disease severity and mortality in COPD. This work highlights AFD as a noninvasive approach to analyze complex changes in airway geometry.

Authors

Eleanor M. Dunican

×

PLK1: a promising and previously unexplored target in double-hit lymphoma
Quais N. Hassan II, … , Lapo Alinari, John C. Byrd
Quais N. Hassan II, … , Lapo Alinari, John C. Byrd
Published November 5, 2018
Citation Information: J Clin Invest. 2018;128(12):5206-5208. https://doi.org/10.1172/JCI124919.
View: Text | PDF

PLK1: a promising and previously unexplored target in double-hit lymphoma

  • Text
  • PDF
Abstract

Inhibitors that target specific kinases or oncoproteins have become popular additions to or replacements for cytotoxic chemotherapies to treat many different types of cancer. However, many tumors lack a discernable target kinase and an amplified oncoprotein and/or rely on several cooperating mechanisms for progression. Thus, combinations of targeted therapies are essential for treating many cancers to avoid the rapid emergence of resistance. In this issue of the JCI, Ren et al. use an elegant kinase activity–profiling method and identify activity of the oncogene polo-like kinase-1 (PLK1) as an important driver of double-hit lymphoma (DHL), an aggressive subgroup of B cell lymphoma characterized by chromosomal translocations involving c-MYC and BCL2 or BCL6. Moreover, PLK1 activity was associated with MYC expression and poor prognosis in DHL patients. PLK1 inhibition with volasertib, alone and in combination with the BCL-2 inhibitor venetoclax, was efficacious in multiple DHL models, including mice harboring DHL patient–derived xenografts. Together, these data support PLK1 as a promising prognostic marker and therapeutic target for DHL.

Authors

Quais N. Hassan II, Lapo Alinari, John C. Byrd

×

Osteopontin controls immunosuppression in the tumor microenvironment
Michael R. Shurin
Michael R. Shurin
Published November 5, 2018
Citation Information: J Clin Invest. 2018;128(12):5209-5212. https://doi.org/10.1172/JCI124918.
View: Text | PDF

Osteopontin controls immunosuppression in the tumor microenvironment

  • Text
  • PDF
Abstract

Cancer cells evade the immune system through a variety of different mechanisms, including the inhibition of antitumor effector T cells via checkpoint ligand–receptor interaction. Moreover, studies have shown that blocking these checkpoint pathways can reinvigorate the antitumor immunity, thereby prompting the development of numerous checkpoint immunotherapies, several of which are now being approved to treat multiple types of cancer. However, only a fraction of patients achieves promising long-term outcomes in response to checkpoint inhibition, suggesting the existence of additional unknown tumor-induced immunosuppressive pathways. In this issue of the JCI, Klement and colleagues describe an additional pathway of T cell inhibition in cancer. Specifically, the authors demonstrate that downregulation of IRF8, a molecular determinant of apoptotic resistance, in tumor cells aborts repression of osteopontin, which in turn binds to its physiological receptor CD44 on activated T cells and suppresses their activation. These results suggest that osteopontin may act as another immune checkpoint and may serve as a target to expand the number of patients who respond to immune checkpoint inhibitor therapy.

Authors

Michael R. Shurin

×

Why are diabetics prone to kidney infections?
Michael Zasloff
Michael Zasloff
Published November 12, 2018
Citation Information: J Clin Invest. 2018;128(12):5213-5215. https://doi.org/10.1172/JCI124922.
View: Text | PDF

Why are diabetics prone to kidney infections?

  • Text
  • PDF
Abstract

People with diabetes mellitus are at higher risk of developing serious ascending infections of the urinary tract. The traditional explanation has focused on the role of glycosuria in promoting bacterial growth. Using mouse models, Murtha et al. demonstrate that when the intracellular insulin signaling pathway is compromised, antimicrobial defenses are compromised too, and the mice are unable to effectively handle uropathogenic E. coli introduced experimentally into the urinary tract. These observations strongly support the hypothesis that the antimicrobial defenses of the kidney are dependent on insulin, and the urinary tract infections associated with diabetes occur due to reduced expression of these key effectors of innate immunity.

Authors

Michael Zasloff

×

A protective role for microRNA-688 in acute kidney injury
Nicholas Chun, … , Steven G. Coca, John Cijiang He
Nicholas Chun, … , Steven G. Coca, John Cijiang He
Published November 12, 2018
Citation Information: J Clin Invest. 2018;128(12):5216-5218. https://doi.org/10.1172/JCI124923.
View: Text | PDF

A protective role for microRNA-688 in acute kidney injury

  • Text
  • PDF
Abstract

Ischemia-reperfusion (I/R) sets off a devastating cascade of events, leading to cell death and possible organ failure. Treatments to limit I/R-associated damage are lacking, and the pathways that drive injury are poorly understood. In this issue of the JCI, Wei and colleagues identify microRNA-668 (miR-668) as a protective factor in acute kidney injury (AKI). miR-668 was shown to repress mitochondrial fission–associated protein MTP18, thereby inhibiting pathogenic mitochondrial fragmentation. In murine models of I/R-induced AKI, treatment with a miR-668 mimetic reduced mitochondrial fragmentation and improved renal function. Moreover, HIF-1α was shown to be required for miR-688 expression in response to I/R. Importantly, Wei et al. show miR-668 upregulation in a cohort of human patients with AKI. Together, these results identify a HIF-1α/miR-668/MTP18 axis that may have potential as a therapeutic target for AKI.

Authors

Nicholas Chun, Steven G. Coca, John Cijiang He

×

STAT3: a link between CaMKII–βIV-spectrin and maladaptive remodeling?
Mohit Hulsurkar, … , Ann P. Quick, Xander H.T. Wehrens
Mohit Hulsurkar, … , Ann P. Quick, Xander H.T. Wehrens
Published November 12, 2018
Citation Information: J Clin Invest. 2018;128(12):5219-5221. https://doi.org/10.1172/JCI124778.
View: Text | PDF

STAT3: a link between CaMKII–βIV-spectrin and maladaptive remodeling?

  • Text
  • PDF
Abstract

βIV-Spectrin, along with ankyrin and Ca2+/calmodulin-dependent kinase II (CaMKII), has been shown to form local signaling domains at the intercalated disc, while playing a key role in the regulation of Na+ and K+ channels in cardiomyocytes. In this issue of the JCI, Unudurthi et al. show that under chronic pressure overload conditions, CaMKII activation leads to βIV-spectrin degradation, resulting in the release of sequestered STAT3 from the intercalated discs. This in turn leads to dysregulation of STAT3-mediated gene transcription, maladaptive remodeling, fibrosis, and decreased cardiac function. Overall, this study presents interesting findings regarding the role of CaMKII and βIV-spectrin under physiological as well as pathological conditions.

Authors

Mohit Hulsurkar, Ann P. Quick, Xander H.T. Wehrens

×
Research Articles
Short telomere syndromes cause a primary T cell immunodeficiency
Christa L. Wagner, … , Leo Luznik, Mary Armanios
Christa L. Wagner, … , Leo Luznik, Mary Armanios
Published September 4, 2018
Citation Information: J Clin Invest. 2018;128(12):5222-5234. https://doi.org/10.1172/JCI120216.
View: Text | PDF

Short telomere syndromes cause a primary T cell immunodeficiency

  • Text
  • PDF
Abstract

The mechanisms that drive T cell aging are not understood. We report that children and adult telomerase mutation carriers with short telomere length (TL) develop a T cell immunodeficiency that can manifest in the absence of bone marrow failure and causes life-threatening opportunistic infections. Mutation carriers shared T cell–aging phenotypes seen in adults 5 decades older, including depleted naive T cells, increased apoptosis, and restricted T cell repertoire. T cell receptor excision circles (TRECs) were also undetectable or low, suggesting that newborn screening may identify individuals with germline telomere maintenance defects. Telomerase-null mice with short TL showed defects throughout T cell development, including increased apoptosis of stimulated thymocytes, their intrathymic precursors, in addition to depleted hematopoietic reserves. When we examined the transcriptional programs of T cells from telomerase mutation carriers, we found they diverged from older adults with normal TL. Short telomere T cells upregulated DNA damage and intrinsic apoptosis pathways, while older adult T cells upregulated extrinsic apoptosis pathways and programmed cell death 1 (PD-1) expression. T cells from mice with short TL also showed an active DNA-damage response, in contrast with old WT mice, despite their shared propensity to apoptosis. Our data suggest there are TL-dependent and TL-independent mechanisms that differentially contribute to distinct molecular programs of T cell apoptosis with aging.

Authors

Christa L. Wagner, Vidya Sagar Hanumanthu, C. Conover Talbot Jr., Roshini S. Abraham, David Hamm, Dustin L. Gable, Christopher G. Kanakry, Carolyn D. Applegate, Janet Siliciano, J. Brooks Jackson, Stephen Desiderio, Jonathan K. Alder, Leo Luznik, Mary Armanios

×

HIC1 deletion promotes breast cancer progression by activating tumor cell/fibroblast crosstalk
Yingying Wang, … , Jinsong Lu, Jianhua Wang
Yingying Wang, … , Jinsong Lu, Jianhua Wang
Published September 11, 2018
Citation Information: J Clin Invest. 2018;128(12):5235-5250. https://doi.org/10.1172/JCI99974.
View: Text | PDF

HIC1 deletion promotes breast cancer progression by activating tumor cell/fibroblast crosstalk

  • Text
  • PDF
Abstract

Breast cancer (BrCa) is the malignant tumor that most seriously threatens female health; however, the molecular mechanism underlying its progression remains unclear. Here, we found that conditional deletion of hypermethylated in cancer 1 (HIC1) in the mouse mammary gland might contribute to premalignant transformation in the early stage of tumor formation. Moreover, the chemokine (C-X-C motif) ligand 14 (CXCL14) secreted by HIC1-deleted BrCa cells bound to its cognate receptor GPR85 on mammary fibroblasts in the microenvironment and was responsible for activating these fibroblasts via the ERK1/2, Akt, and neddylation pathways, whereas the activated fibroblasts promoted BrCa progression via the induction of epithelial-mesenchymal transition (EMT) by the C-C chemokine ligand 17 (CCL17)/CC chemokine receptor 4 (CCR4) axis. Finally, we confirmed that the HIC1-CXCL14-CCL17 loop was associated with the malignant progression of BrCa. Therefore, the crosstalk between HIC1-deleted BrCa cells and mammary fibroblasts might play a critical role in BrCa development. Exploring the progression of BrCa from the perspective of microenvironment will be beneficial for identifying the potential prognostic markers of breast tumor and providing more effective treatment strategies.

Authors

Yingying Wang, Xiaoling Weng, Luoyang Wang, Mingang Hao, Yue Li, Lidan Hou, Yu Liang, Tianqi Wu, Mengfei Yao, Guowen Lin, Yiwei Jiang, Guohui Fu, Zhaoyuan Hou, Xiangjun Meng, Jinsong Lu, Jianhua Wang

×

Long noncoding RNA Bmncr regulates mesenchymal stem cell fate during skeletal aging
Chang-Jun Li, … , Yan Huang, Xiang-Hang Luo
Chang-Jun Li, … , Yan Huang, Xiang-Hang Luo
Published October 22, 2018
Citation Information: J Clin Invest. 2018;128(12):5251-5266. https://doi.org/10.1172/JCI99044.
View: Text | PDF

Long noncoding RNA Bmncr regulates mesenchymal stem cell fate during skeletal aging

  • Text
  • PDF
Abstract

Bone marrow mesenchymal stem cells (BMSCs) exhibit an age-related lineage switch between osteogenic and adipogenic fates, which contributes to bone loss and adiposity. Here we identified a long noncoding RNA, Bmncr, which regulated the fate of BMSCs during aging. Mice depleted of Bmncr (Bmncr-KO) showed decreased bone mass and increased bone marrow adiposity, whereas transgenic overexpression of Bmncr (Bmncr-Tg) alleviated bone loss and bone marrow fat accumulation. Bmncr regulated the osteogenic niche of BMSCs by maintaining extracellular matrix protein fibromodulin (FMOD) and activation of the BMP2 pathway. Bmncr affected local 3D chromatin structure and transcription of Fmod. The absence of Fmod modified the bone phenotype of Bmncr-Tg mice. Further analysis revealed that Bmncr would serve as a scaffold to facilitate the interaction of TAZ and ABL, and thus facilitate the assembly of the TAZ and RUNX2/PPARG transcriptional complex, promoting osteogenesis and inhibiting adipogenesis. Adeno-associated viral-mediated overexpression of Taz in osteoprogenitors alleviated bone loss and marrow fat accumulation in Bmncr-KO mice. Furthermore, restoring BMNCR levels in human BMSCs reversed the age-related switch between osteoblast and adipocyte differentiation. Our findings indicate that Bmncr is a key regulator of the age-related osteogenic niche alteration and cell fate switch of BMSCs.

Authors

Chang-Jun Li, Ye Xiao, Mi Yang, Tian Su, Xi Sun, Qi Guo, Yan Huang, Xiang-Hang Luo

×

Exposure to wild-type AAV drives distinct capsid immunity profiles in humans
Klaudia Kuranda, … , Philippe Veron, Federico Mingozzi
Klaudia Kuranda, … , Philippe Veron, Federico Mingozzi
Published October 22, 2018
Citation Information: J Clin Invest. 2018;128(12):5267-5279. https://doi.org/10.1172/JCI122372.
View: Text | PDF

Exposure to wild-type AAV drives distinct capsid immunity profiles in humans

  • Text
  • PDF
Abstract

Recombinant adeno-associated virus (AAV) vectors have been broadly adopted as a gene delivery tool in clinical trials, owing to their high efficiency of transduction of several host tissues and their low immunogenicity. However, a considerable proportion of the population is naturally exposed to the WT virus from which AAV vectors are derived, which leads to the acquisition of immunological memory that can directly determine the outcome of gene transfer. Here, we show that prior exposure to AAV drives distinct capsid immunity profiles in healthy subjects. In peripheral blood mononuclear cells (PBMCs) isolated from AAV-seropositive donors, recombinant AAV triggered TNF-α secretion in memory CD8+ T cells, B cell differentiation into antibody-secreting cells, and anti-capsid antibody production. Conversely, PBMCs isolated from AAV-seronegative individuals appeared to carry a population of NK cells reactive to AAV. Further, we demonstrated that the AAV capsid activates IL-1β and IL-6 cytokine secretion in monocyte-related dendritic cells (moDCs). IL-1β and IL-6 blockade inhibited the anti-capsid humoral response in vitro and in vivo. These results provide insights into immune responses to AAV in humans, define a possible role for moDCs and NK cells in capsid immunity, and open new avenues for the modulation of vector immunogenicity.

Authors

Klaudia Kuranda, Priscilla Jean-Alphonse, Christian Leborgne, Romain Hardet, Fanny Collaud, Solenne Marmier, Helena Costa Verdera, Giuseppe Ronzitti, Philippe Veron, Federico Mingozzi

×

A carnosine analog mitigates metabolic disorders of obesity by reducing carbonyl stress
Ethan J. Anderson, … , Marina Carini, Giancarlo Aldini
Ethan J. Anderson, … , Marina Carini, Giancarlo Aldini
Published September 18, 2018
Citation Information: J Clin Invest. 2018;128(12):5280-5293. https://doi.org/10.1172/JCI94307.
View: Text | PDF

A carnosine analog mitigates metabolic disorders of obesity by reducing carbonyl stress

  • Text
  • PDF
Abstract

Sugar- and lipid-derived aldehydes are reactive carbonyl species (RCS) frequently used as surrogate markers of oxidative stress in obesity. A pathogenic role for RCS in metabolic diseases of obesity remains controversial, however, partly because of their highly diffuse and broad reactivity and the lack of specific RCS-scavenging therapies. Naturally occurring histidine dipeptides (e.g., anserine and carnosine) show RCS reactivity, but their therapeutic potential in humans is limited by serum carnosinases. Here, we present the rational design, characterization, and pharmacological evaluation of carnosinol, i.e., (2S)-2-(3-amino propanoylamino)-3-(1H-imidazol-5-yl)propanol, a derivative of carnosine with high oral bioavailability that is resistant to carnosinases. Carnosinol displayed a suitable ADMET (absorption, distribution, metabolism, excretion, and toxicity) profile and was determined to have the greatest potency and selectivity toward α,β-unsaturated aldehydes (e.g., 4-hydroxynonenal, HNE, ACR) among all others reported thus far. In rodent models of diet-induced obesity and metabolic syndrome, carnosinol dose-dependently attenuated HNE adduct formation in liver and skeletal muscle, while simultaneously mitigating inflammation, dyslipidemia, insulin resistance, and steatohepatitis. These improvements in metabolic parameters with carnosinol were not due to changes in energy expenditure, physical activity, adiposity, or body weight. Collectively, our findings illustrate a pathogenic role for RCS in obesity-related metabolic disorders and provide validation for a promising new class of carbonyl-scavenging therapeutic compounds rationally derived from carnosine.

Authors

Ethan J. Anderson, Giulio Vistoli, Lalage A. Katunga, Katsuhiko Funai, Luca Regazzoni, T. Blake Monroe, Ettore Gilardoni, Luca Cannizzaro, Mara Colzani, Danilo De Maddis, Giuseppe Rossoni, Renato Canevotti, Stefania Gagliardi, Marina Carini, Giancarlo Aldini

×

Inadequate ubiquitination-proteasome coupling contributes to myocardial ischemia-reperfusion injury
Chengjun Hu, … , Jinbao Liu, Xuejun Wang
Chengjun Hu, … , Jinbao Liu, Xuejun Wang
Published September 11, 2018
Citation Information: J Clin Invest. 2018;128(12):5294-5306. https://doi.org/10.1172/JCI98287.
View: Text | PDF

Inadequate ubiquitination-proteasome coupling contributes to myocardial ischemia-reperfusion injury

  • Text
  • PDF
Abstract

The ubiquitin-proteasome system (UPS) degrades a protein molecule via 2 main steps: ubiquitination and proteasomal degradation. Extraproteasomal ubiquitin receptors are thought to couple the 2 steps, but this proposition has not been tested in vivo with vertebrates. More importantly, impaired UPS performance plays a major role in cardiac pathogenesis, including myocardial ischemia-reperfusion injury (IRI), but the molecular basis of UPS impairment remains poorly understood. Ubiquilin1 is a bona fide extraproteasomal ubiquitin receptor. Here, we report that mice with a cardiomyocyte-restricted knockout of Ubiquilin1 (Ubqln1-CKO mice) accumulated a surrogate UPS substrate (GFPdgn) and increased myocardial ubiquitinated proteins without altering proteasome activities, resulting in late-onset cardiomyopathy and a markedly shortened life span. When subject to regional myocardial ischemia-reperfusion, young Ubqln1-CKO mice showed substantially exacerbated cardiac malfunction and enlarged infarct size, and conversely, mice with transgenic Ubqln1 overexpression displayed attenuated IRI. Furthermore, Ubqln1 overexpression facilitated proteasomal degradation of oxidized proteins and the degradation of a UPS surrogate substrate in cultured cardiomyocytes without increasing autophagic flux. These findings demonstrate that Ubiquilin1 is essential to cardiac ubiquitination-proteasome coupling and that an inadequacy in the coupling represents a major pathogenic factor for myocardial IRI; therefore, strategies to strengthen coupling have the potential to reduce IRI.

Authors

Chengjun Hu, Yihao Tian, Hongxin Xu, Bo Pan, Erin M. Terpstra, Penglong Wu, Hongmin Wang, Faqian Li, Jinbao Liu, Xuejun Wang

×

Dynamin impacts homology-directed repair and breast cancer response to chemotherapy
Sophia B. Chernikova, … , Balázs Győrffy, J. Martin Brown
Sophia B. Chernikova, … , Balázs Győrffy, J. Martin Brown
Published October 29, 2018
Citation Information: J Clin Invest. 2018;128(12):5307-5321. https://doi.org/10.1172/JCI87191.
View: Text | PDF

Dynamin impacts homology-directed repair and breast cancer response to chemotherapy

  • Text
  • PDF
Abstract

After the initial responsiveness of triple-negative breast cancers (TNBCs) to chemotherapy, they often recur as chemotherapy-resistant tumors, and this has been associated with upregulated homology-directed repair (HDR). Thus, inhibitors of HDR could be a useful adjunct to chemotherapy treatment of these cancers. We performed a high-throughput chemical screen for inhibitors of HDR from which we obtained a number of hits that disrupted microtubule dynamics. We postulated that high levels of the target molecules of our screen in tumors would correlate with poor chemotherapy response. We found that inhibition or knockdown of dynamin 2 (DNM2), known for its role in endocytic cell trafficking and microtubule dynamics, impaired HDR and improved response to chemotherapy of cells and of tumors in mice. In a retrospective analysis, levels of DNM2 at the time of treatment strongly predicted chemotherapy outcome for estrogen receptor–negative and especially for TNBC patients. We propose that DNM2-associated DNA repair enzyme trafficking is important for HDR efficiency and is a powerful predictor of sensitivity to breast cancer chemotherapy and an important target for therapy.

Authors

Sophia B. Chernikova, Rochelle B. Nguyen, Jessica T. Truong, Stephano S. Mello, Jason H. Stafford, Michael P. Hay, Andrew Olson, David E. Solow-Cordero, Douglas J. Wood, Solomon Henry, Rie von Eyben, Lei Deng, Melanie Hayden Gephart, Asaithamby Aroumougame, Claudia Wiese, John C. Game, Balázs Győrffy, J. Martin Brown

×

CNS-resident classical DCs play a critical role in CNS autoimmune disease
David A. Giles, … , Jesse M. Washnock-Schmid, Benjamin M. Segal
David A. Giles, … , Jesse M. Washnock-Schmid, Benjamin M. Segal
Published September 18, 2018
Citation Information: J Clin Invest. 2018;128(12):5322-5334. https://doi.org/10.1172/JCI123708.
View: Text | PDF

CNS-resident classical DCs play a critical role in CNS autoimmune disease

  • Text
  • PDF
Abstract

Experimental autoimmune encephalomyelitis (EAE) is an inflammatory demyelinating disease of the central nervous system (CNS), induced by the adoptive transfer of myelin-reactive CD4+ T cells into naive syngeneic mice. It is widely used as a rodent model of multiple sclerosis (MS). The development of EAE lesions is initiated when transferred CD4+ T cells access the CNS and are reactivated by local antigen-presenting cells (APCs) bearing endogenous myelin peptide/MHC class II complexes. The identity of the CNS-resident, lesion-initiating APCs is widely debated. Here we demonstrate that classical dendritic cells (cDCs) normally reside in the meninges, brain, and spinal cord in the steady state. These cells are unique among candidate CNS APCs in their ability to stimulate naive, as well as effector, myelin-specific T cells to proliferate and produce proinflammatory cytokines directly ex vivo. cDCs expanded in the meninges and CNS parenchyma in association with disease progression. Selective depletion of cDCs led to a decrease in the number of myelin-primed donor T cells in the CNS and reduced the incidence of clinical EAE by half. Based on our findings, we propose that cDCs, and the factors that regulate them, be further investigated as potential therapeutic targets in MS.

Authors

David A. Giles, Patrick C. Duncker, Nicole M. Wilkinson, Jesse M. Washnock-Schmid, Benjamin M. Segal

×

Rho-kinase/AMPK axis regulates hepatic lipogenesis during overnutrition
Hu Huang, … , John Jones, Young-Bum Kim
Hu Huang, … , John Jones, Young-Bum Kim
Published September 18, 2018
Citation Information: J Clin Invest. 2018;128(12):5335-5350. https://doi.org/10.1172/JCI63562.
View: Text | PDF

Rho-kinase/AMPK axis regulates hepatic lipogenesis during overnutrition

  • Text
  • PDF
Abstract

Obesity is a major risk factor for developing nonalcoholic fatty liver disease (NAFLD). NAFLD is the most common form of chronic liver disease and is closely associated with insulin resistance, ultimately leading to cirrhosis and hepatocellular carcinoma. However, knowledge of the intracellular regulators of obesity-linked fatty liver disease remains incomplete. Here we showed that hepatic Rho-kinase 1 (ROCK1) drives obesity-induced steatosis in mice through stimulation of de novo lipogenesis. Mice lacking ROCK1 in the liver were resistant to diet-induced obesity owing to increased energy expenditure and thermogenic gene expression. Constitutive expression of hepatic ROCK1 was sufficient to promote adiposity, insulin resistance, and hepatic lipid accumulation in mice fed a high-fat diet. Correspondingly, liver-specific ROCK1 deletion prevented the development of severe hepatic steatosis and reduced hyperglycemia in obese diabetic (ob/ob) mice. Of pathophysiological significance, hepatic ROCK1 was markedly upregulated in humans with fatty liver disease and correlated with risk factors clustering around NAFLD and insulin resistance. Mechanistically, we found that hepatic ROCK1 suppresses AMPK activity and a ROCK1/AMPK pathway is necessary to mediate cannabinoid-induced lipogenesis in the liver. Furthermore, treatment with metformin, the most widely used antidiabetes drug, reduced hepatic lipid accumulation by inactivating ROCK1, resulting in activation of AMPK downstream signaling. Taken together, our findings establish a ROCK1/AMPK signaling axis that regulates de novo lipogenesis, providing a unique target for treating obesity-related metabolic disorders such as NAFLD.

Authors

Hu Huang, Seung-Hwan Lee, Inês Sousa-Lima, Sang Soo Kim, Won Min Hwang, Yossi Dagon, Won-Mo Yang, Sungman Cho, Min-Cheol Kang, Ji A. Seo, Munehiko Shibata, Hyunsoo Cho, Getachew Debas Belew, Jinhyuk Bhin, Bhavna N. Desai, Min Jeong Ryu, Minho Shong, Peixin Li, Hua Meng, Byung-Hong Chung, Daehee Hwang, Min Seon Kim, Kyong Soo Park, Maria Paula Macedo, Morris White, John Jones, Young-Bum Kim

×

Thrombocytopenia-associated mutations in Ser/Thr kinase MASTL deregulate actin cytoskeletal dynamics in platelets
Begoña Hurtado, … , Pablo García de Frutos, Marcos Malumbres
Begoña Hurtado, … , Pablo García de Frutos, Marcos Malumbres
Published September 25, 2018
Citation Information: J Clin Invest. 2018;128(12):5351-5367. https://doi.org/10.1172/JCI121876.
View: Text | PDF

Thrombocytopenia-associated mutations in Ser/Thr kinase MASTL deregulate actin cytoskeletal dynamics in platelets

  • Text
  • PDF
Abstract

MASTL, a Ser/Thr kinase that inhibits PP2A-B55 complexes during mitosis, is mutated in autosomal dominant thrombocytopenia. However, the connections between the cell-cycle machinery and this human disease remain unexplored. We report here that, whereas Mastl ablation in megakaryocytes prevented proper maturation of these cells, mice carrying the thrombocytopenia-associated mutation developed thrombocytopenia as a consequence of aberrant activation and survival of platelets. Activation of mutant platelets was characterized by hyperstabilized pseudopods mimicking the effect of PP2A inhibition and actin polymerization defects. These aberrations were accompanied by abnormal hyperphosphorylation of multiple components of the actin cytoskeleton and were rescued both in vitro and in vivo by inhibiting upstream kinases such as PKA, PKC, or AMPK. These data reveal an unexpected role of Mastl in actin cytoskeletal dynamics in postmitotic cells and suggest that the thrombocytopenia-associated mutation in MASTL is a pathogenic dominant mutation that mimics decreased PP2A activity resulting in altered phosphorylation of cytoskeletal regulatory pathways.

Authors

Begoña Hurtado, Marianna Trakala, Pilar Ximénez-Embún, Aicha El Bakkali, David Partida, Belén Sanz-Castillo, Mónica Álvarez-Fernández, María Maroto, Ruth Sánchez-Martínez, Lola Martínez, Javier Muñoz, Pablo García de Frutos, Marcos Malumbres

×

Autoimmune hyperphosphatemic tumoral calcinosis in a patient with FGF23 autoantibodies
Mary Scott Roberts, … , Michael T. Collins, Rachel I. Gafni
Mary Scott Roberts, … , Michael T. Collins, Rachel I. Gafni
Published September 18, 2018
Citation Information: J Clin Invest. 2018;128(12):5368-5373. https://doi.org/10.1172/JCI122004.
View: Text | PDF Concise Communication

Autoimmune hyperphosphatemic tumoral calcinosis in a patient with FGF23 autoantibodies

  • Text
  • PDF
Abstract

Hyperphosphatemic familial tumoral calcinosis (HFTC)/hyperostosis-hyperphosphatemia syndrome (HHS) is an autosomal recessive disorder of ectopic calcification due to deficiency of or resistance to intact fibroblast growth factor 23 (iFGF23). Inactivating mutations in FGF23, N-acetylgalactosaminyltransferase 3 (GALNT3), or KLOTHO (KL) have been reported as causing HFTC/HHS. We present what we believe is the first identified case of autoimmune hyperphosphatemic tumoral calcinosis in an 8-year-old boy. In addition to the classical clinical and biochemical features of hyperphosphatemic tumoral calcinosis, the patient exhibited markedly elevated intact and C-terminal FGF23 levels, suggestive of FGF23 resistance. However, no mutations in FGF23, KL, or FGF receptor 1 (FGFR1) were identified. He subsequently developed type 1 diabetes mellitus, which raised the possibility of an autoimmune cause for hyperphosphatemic tumoral calcinosis. Luciferase immunoprecipitation systems revealed markedly elevated FGF23 autoantibodies without detectable FGFR1 or Klotho autoantibodies. Using an in vitro FGF23 functional assay, we found that the FGF23 autoantibodies in the patient’s plasma blocked downstream signaling via the MAPK/ERK signaling pathway in a dose-dependent manner. Thus, this report describes the first case, to our knowledge, of autoimmune hyperphosphatemic tumoral calcinosis with pathogenic autoantibodies targeting FGF23. Identification of this pathophysiology extends the etiologic spectrum of hyperphosphatemic tumoral calcinosis and suggests that immunomodulatory therapy may be an effective treatment.

Authors

Mary Scott Roberts, Peter D. Burbelo, Daniela Egli-Spichtig, Farzana Perwad, Christopher J. Romero, Shoji Ichikawa, Emily Farrow, Michael J. Econs, Lori C. Guthrie, Michael T. Collins, Rachel I. Gafni

×

Airway fractal dimension predicts respiratory morbidity and mortality in COPD
Sandeep Bodduluri, … , Surya P. Bhatt, COPDGene Investigators
Sandeep Bodduluri, … , Surya P. Bhatt, COPDGene Investigators
Published September 26, 2018
Citation Information: J Clin Invest. 2018;128(12):5374-5382. https://doi.org/10.1172/JCI120693.
View: Text | PDF | Erratum Clinical Research and Public Health

Airway fractal dimension predicts respiratory morbidity and mortality in COPD

  • Text
  • PDF
Abstract

BACKGROUND. Chronic obstructive pulmonary disease (COPD) is characterized by airway remodeling. Characterization of airway changes on computed tomography has been challenging due to the complexity of the recurring branching patterns, and this can be better measured using fractal dimensions. METHODS. We analyzed segmented airway trees of 8,135 participants enrolled in the COPDGene cohort. The fractal complexity of the segmented airway tree was measured by the Airway Fractal Dimension (AFD) using the Minkowski-Bougliand box-counting dimension. We examined associations between AFD and lung function and respiratory morbidity using multivariable regression analyses. We further estimated the extent of peribronchial emphysema (%) within 5 mm of the airway tree, as this is likely to affect AFD. We classified participants into 4 groups based on median AFD, percentage of peribronchial emphysema, and estimated survival. RESULTS. AFD was significantly associated with forced expiratory volume in one second (FEV1; P < 0.001) and FEV1/forced vital capacity (FEV1/FVC; P < 0.001) after adjusting for age, race, sex, smoking status, pack-years of smoking, BMI, CT emphysema, air trapping, airway thickness, and CT scanner type. On multivariable analysis, AFD was also associated with respiratory quality of life and 6-minute walk distance, as well as exacerbations, lung function decline, and mortality on longitudinal follow-up. We identified a subset of participants with AFD below the median and peribronchial emphysema above the median who had worse survival compared with participants with high AFD and low peribronchial emphysema (adjusted hazards ratio [HR]: 2.72; 95% CI: 2.20–3.35; P < 0.001), a substantial number of whom were not identified by traditional spirometry severity grades. CONCLUSION. Airway fractal dimension as a measure of airway branching complexity and remodeling in smokers is associated with respiratory morbidity and lung function change, offers prognostic information additional to traditional CT measures of airway wall thickness, and can be used to estimate mortality risk. TRIAL REGISTRATION. ClinicalTrials.gov identifier: NCT00608764. FUNDING. This study was supported by NIH K23 HL133438 (SPB) and the COPDGene study (NIH Grant Numbers R01 HL089897 and R01 HL089856). The COPDGene project is also supported by the COPD Foundation through contributions made to an Industry Advisory Board comprised of AstraZeneca, Boehringer Ingelheim, Novartis, Pfizer, Siemens, Sunovion and GlaxoSmithKline.

Authors

Sandeep Bodduluri, Abhilash S. Kizhakke Puliyakote, Sarah E. Gerard, Joseph M. Reinhardt, Eric A. Hoffman, John D. Newell Jr., Hrudaya P. Nath, MeiLan K. Han, George R. Washko, Raúl San José Estépar, Mark T. Dransfield, Surya P. Bhatt, COPDGene Investigators

×

Chromatin regulator Asxl1 loss and Nf1 haploinsufficiency cooperate to accelerate myeloid malignancy
Peng Zhang, … , Qian-Fei Wang, Feng-Chun Yang
Peng Zhang, … , Qian-Fei Wang, Feng-Chun Yang
Published September 18, 2018
Citation Information: J Clin Invest. 2018;128(12):5383-5398. https://doi.org/10.1172/JCI121366.
View: Text | PDF

Chromatin regulator Asxl1 loss and Nf1 haploinsufficiency cooperate to accelerate myeloid malignancy

  • Text
  • PDF
Abstract

ASXL1 is frequently mutated in myeloid malignancies and is known to co-occur with other gene mutations. However, the molecular mechanisms underlying the leukemogenesis associated with ASXL1 and cooperating mutations remain to be elucidated. Here, we report that Asxl1 loss cooperated with haploinsufficiency of Nf1, a negative regulator of the RAS signaling pathway, to accelerate the development of myeloid leukemia in mice. Loss of Asxl1 and Nf1 in hematopoietic stem and progenitor cells resulted in a gain-of-function transcriptional activation of multiple pathways such as MYC, NRAS, and BRD4 that are critical for leukemogenesis. The hyperactive MYC and BRD9 transcription programs were correlated with elevated H3K4 trimethylation at the promoter regions of genes involving these pathways. Furthermore, pharmacological inhibition of both the MAPK pathway and BET bromodomain prevented leukemia initiation and inhibited disease progression in Asxl1Δ/Δ Nf1Δ/Δ mice. Concomitant mutations of ASXL1 and RAS pathway genes were associated with aggressive progression of myeloid malignancies in patients. This study sheds light on the effect of cooperation between epigenetic alterations and signaling pathways on accelerating the progression of myeloid malignancies and provides a rational therapeutic strategy for the treatment of myeloid malignancies with ASXL1 and RAS pathway gene mutations.

Authors

Peng Zhang, Fuhong He, Jie Bai, Shohei Yamamoto, Shi Chen, Lin Zhang, Mengyao Sheng, Lei Zhang, Ying Guo, Na Man, Hui Yang, Suyun Wang, Tao Cheng, Stephen D. Nimer, Yuan Zhou, Mingjiang Xu, Qian-Fei Wang, Feng-Chun Yang

×

TLR-stimulated IRAKM activates caspase-8 inflammasome in microglia and promotes neuroinflammation
Cun-Jin Zhang, … , Richard M. Ransohoff, Xiaoxia Li
Cun-Jin Zhang, … , Richard M. Ransohoff, Xiaoxia Li
Published October 29, 2018
Citation Information: J Clin Invest. 2018;128(12):5399-5412. https://doi.org/10.1172/JCI121901.
View: Text | PDF

TLR-stimulated IRAKM activates caspase-8 inflammasome in microglia and promotes neuroinflammation

  • Text
  • PDF
Abstract

NLRP3 inflammasome plays a critical spatiotemporal role in the pathogenesis of experimental autoimmune encephalomyelitis (EAE). This study reports a mechanistic insight into noncanonical NLRP3 inflammasome activation in microglia for the effector stage of EAE. Microglia-specific deficiency of ASC (apoptosis-associated speck-like protein containing a C-terminal caspase-activation and recruitment [CARD] domain) attenuated T cell expansion and neutrophil recruitment during EAE pathogenesis. Mechanistically, TLR stimulation led to IRAKM–caspase-8–ASC complex formation, resulting in the activation of caspase-8 and IL-1β release in microglia. Noncanonical inflammasome-derived IL-1β produced by microglia in the CNS helped to expand the microglia population in an autocrine manner and amplified the production of inflammatory cytokines/chemokines. Furthermore, active caspase-8 was markedly increased in the microglia in the brain tissue from patients with multiple sclerosis. Taken together, our study suggests that microglia-derived IL-1β via noncanonical caspase-8–dependent inflammasome is necessary for microglia to exert their pathogenic role during CNS inflammation.

Authors

Cun-Jin Zhang, Meiling Jiang, Hao Zhou, Weiwei Liu, Chenhui Wang, Zizhen Kang, Bing Han, Quanri Zhang, Xing Chen, Jianxin Xiao, Amanda Fisher, William J. Kaiser, Masanori A. Murayama, Yoichiro Iwakura, Ji Gao, Julie Carman, Ashok Dongre, George Dubyak, Derek W. Abbott, Fu-Dong Shi, Richard M. Ransohoff, Xiaoxia Li

×

Regularizing firing patterns of rat subthalamic neurons ameliorates parkinsonian motor deficits
Qian-Xing Zhuang, … , Jian-Jun Wang, Jing-Ning Zhu
Qian-Xing Zhuang, … , Jian-Jun Wang, Jing-Ning Zhu
Published September 18, 2018
Citation Information: J Clin Invest. 2018;128(12):5413-5427. https://doi.org/10.1172/JCI99986.
View: Text | PDF

Regularizing firing patterns of rat subthalamic neurons ameliorates parkinsonian motor deficits

  • Text
  • PDF
Abstract

The subthalamic nucleus (STN) is an effective therapeutic target for deep brain stimulation (DBS) for Parkinson’s disease (PD), and histamine levels are elevated in the basal ganglia in PD patients. However, the effect of endogenous histaminergic modulation on STN neuronal activities and the neuronal mechanism underlying STN-DBS are unknown. Here, we report that STN neuronal firing patterns are more crucial than firing rates for motor control. Histamine excited STN neurons, but paradoxically ameliorated parkinsonian motor deficits, which we attributed to regularizing firing patterns of STN neurons via the hyperpolarization-activated cyclic nucleotide–gated channel 2 (HCN2) channel coupled to the H2 receptor. Intriguingly, DBS increased histamine release in the STN and regularized STN neuronal firing patterns under parkinsonian conditions. HCN2 contributed to the DBS-induced regularization of neuronal firing patterns, suppression of excessive β oscillations, and alleviation of motor deficits in PD. The results reveal an indispensable role for regularizing STN neuronal firing patterns in amelioration of parkinsonian motor dysfunction and a functional compensation for histamine in parkinsonian basal ganglia circuitry. The findings provide insights into mechanisms of STN-DBS as well as potential therapeutic targets and STN-DBS strategies for PD.

Authors

Qian-Xing Zhuang, Guang-Ying Li, Bin Li, Chang-Zheng Zhang, Xiao-Yang Zhang, Kang Xi, Hong-Zhao Li, Jian-Jun Wang, Jing-Ning Zhu

×

Cigarette smoke and HIV synergistically affect lung pathology in cynomolgus macaques
Hitendra S. Chand, … , Shilpa Buch, Mohan Sopori
Hitendra S. Chand, … , Shilpa Buch, Mohan Sopori
Published October 2, 2018
Citation Information: J Clin Invest. 2018;128(12):5428-5433. https://doi.org/10.1172/JCI121935.
View: Text | PDF Concise Communication

Cigarette smoke and HIV synergistically affect lung pathology in cynomolgus macaques

  • Text
  • PDF
Abstract

In the era of combined antiretroviral therapy (cART), lung diseases such as chronic bronchitis (CB) and chronic obstructive pulmonary disease (COPD) are common among persons living with HIV (PLWH), particularly smokers. Although smoking is highly prevalent among PLWH, HIV may be an independent risk factor for lung diseases; however, the role of HIV and cigarette smoke (CS) and their potential interaction in the development of chronic lung diseases among PLWH has not been delineated. To investigate this interaction, cynomolgus macaques were exposed to CS and/or simian-adapted human immunodeficiency virus (SHIV) and treated with cART. The development of CB and the lung functions were evaluated following CS±SHIV treatment. The results showed that in the lung, SHIV was a strong independent risk factor for goblet cell metaplasia/hyperplasia and mucus formation, MUC5AC synthesis, loss of tight junction proteins, and increased expression of Th2 cytokines/transcription factors. In addition, SHIV and CS synergistically reduced lung function and increased extrathoracic tracheal ring thickness. Interestingly, SHIV infection generated significant numbers of HIV-gp120+ epithelial cells (HGECs) in small airways and alveoli, and their numbers doubled in CS+SHIV-infected lungs. We conclude that even with cART, SHIV independently induces CB and pro-COPD changes in the lung, and the effects are exacerbated by CS.

Authors

Hitendra S. Chand, Rodrigo Vazquez-Guillamet, Christopher Royer, Karin Rudolph, Neerad Mishra, Shashi P. Singh, Shah S. Hussain, Edward Barrett, Shannon Callen, Siddappa N. Byrareddy, Maria Cristina Vazquez Guillamet, Jawad Abukhalaf, Aryaz Sheybani, Vernat Exil, Veena Raizada, Hemant Agarwal, Madhavan Nair, Francois Villinger, Shilpa Buch, Mohan Sopori

×

A disease mutation reveals a role for NaV1.9 in acute itch
Juan Salvatierra, … , Xinzhong Dong, Frank Bosmans
Juan Salvatierra, … , Xinzhong Dong, Frank Bosmans
Published November 5, 2018
Citation Information: J Clin Invest. 2018;128(12):5434-5447. https://doi.org/10.1172/JCI122481.
View: Text | PDF

A disease mutation reveals a role for NaV1.9 in acute itch

  • Text
  • PDF
Abstract

Itch (pruritis) and pain represent two distinct sensory modalities; yet both have evolved to alert us to potentially harmful external stimuli. Compared with pain, our understanding of itch is still nascent. Here, we report a new clinical case of debilitating itch and altered pain perception resulting from the heterozygous de novo p.L811P gain-of-function mutation in NaV1.9, a voltage-gated sodium (NaV) channel subtype that relays sensory information from the periphery to the spine. To investigate the role of NaV1.9 in itch, we developed a mouse line in which the channel is N-terminally tagged with a fluorescent protein, thereby enabling the reliable identification and biophysical characterization of NaV1.9-expressing neurons. We also assessed NaV1.9 involvement in itch by using a newly created NaV1.9–/– and NaV1.9L799P/WT mouse model. We found that NaV1.9 is expressed in a subset of nonmyelinated, nonpeptidergic small-diameter dorsal root ganglia (DRGs). In WT DRGs, but not those of NaV1.9–/– mice, pruritogens altered action potential parameters and NaV channel gating properties. Additionally, NaV1.9–/– mice exhibited a strong reduction in acute scratching behavior in response to pruritogens, whereas NaV1.9L799P/WT mice displayed increased spontaneous scratching. Altogether, our data suggest an important contribution of NaV1.9 to itch signaling.

Authors

Juan Salvatierra, Marcelo Diaz-Bustamante, James Meixiong, Elaine Tierney, Xinzhong Dong, Frank Bosmans

×

MicroRNA-668 represses MTP18 to preserve mitochondrial dynamics in ischemic acute kidney injury
Qingqing Wei, … , Changlin Mei, Zheng Dong
Qingqing Wei, … , Changlin Mei, Zheng Dong
Published October 16, 2018
Citation Information: J Clin Invest. 2018;128(12):5448-5464. https://doi.org/10.1172/JCI121859.
View: Text | PDF

MicroRNA-668 represses MTP18 to preserve mitochondrial dynamics in ischemic acute kidney injury

  • Text
  • PDF
Abstract

The pathogenesis of ischemic diseases remains unclear. Here we demonstrate the induction of microRNA-668 (miR-668) in ischemic acute kidney injury (AKI) in human patients, mice, and renal tubular cells. The induction was HIF-1 dependent, as HIF-1 deficiency in cells and kidney proximal tubules attenuated miR-668 expression. We further identified a functional HIF-1 binding site in the miR-668 gene promoter. Anti–miR-668 increased apoptosis in renal tubular cells and enhanced ischemic AKI in mice, whereas miR-668 mimic was protective. Mechanistically, anti–miR-668 induced mitochondrial fragmentation, whereas miR-668 blocked mitochondrial fragmentation during hypoxia. We analyzed miR-668 target genes through immunoprecipitation of microRNA-induced silencing complexes followed by RNA deep sequencing and identified 124 protein-coding genes as likely targets of miR-668. Among these genes, only mitochondrial protein 18 kDa (MTP18) has been implicated in mitochondrial dynamics. In renal cells and mouse kidneys, miR-668 mimic suppressed MTP18, whereas anti–miR-668 increased MTP18 expression. Luciferase microRNA target reporter assay further verified MTP18 as a direct target of miR-668. In renal tubular cells, knockdown of MTP18 suppressed mitochondrial fragmentation and apoptosis. Together, the results suggest that miR-668 is induced via HIF-1 in ischemic AKI and that, upon induction, miR-668 represses MTP18 to preserve mitochondrial dynamics for renal tubular cell survival and kidney protection.

Authors

Qingqing Wei, Haipeng Sun, Shuwei Song, Yong Liu, Pengyuan Liu, Man Jiang Livingston, Jianwen Wang, Mingyu Liang, Qing-Sheng Mi, Yuqing Huo, Norris Stanley Nahman, Changlin Mei, Zheng Dong

×

CD84 regulates PD-1/PD-L1 expression and function in chronic lymphocytic leukemia
Hadas Lewinsky, … , Shirly Becker-Herman, Idit Shachar
Hadas Lewinsky, … , Shirly Becker-Herman, Idit Shachar
Published October 2, 2018
Citation Information: J Clin Invest. 2018;128(12):5465-5478. https://doi.org/10.1172/JCI96610.
View: Text | PDF

CD84 regulates PD-1/PD-L1 expression and function in chronic lymphocytic leukemia

  • Text
  • PDF
Abstract

Chronic lymphocytic leukemia (CLL) is characterized by clonal proliferation and progressive accumulation of mature B lymphocytes in the peripheral blood, lymphoid tissues, and bone marrow. CLL is characterized by profound immune defects leading to severe infectious complications. T cells are numerically, phenotypically, and functionally highly abnormal in CLL, with only limited ability to exert antitumor immune responses. Exhaustion of T cells has also been suggested to play an important role in antitumor responses. CLL-mediated T cell exhaustion is achieved by the aberrant expression of several inhibitory molecules on CLL cells and their microenvironment, prominently the programmed cell death ligand 1/programmed cell death 1 (PD-L1/PD-1) receptors. Previously, we showed that CD84, a member of the SLAM family of receptors, bridges between CLL cells and their microenvironment. In the current study, we followed CD84 regulation of T cell function. We showed that cell-cell interaction mediated through human and mouse CD84 upregulates PD-L1 expression on CLL cells and in their microenvironment and PD-1 expression on T cells. This resulted in suppression of T cell responses and activity in vitro and in vivo. Thus, our results demonstrate a role for CD84 in the regulation of immune checkpoints by leukemia cells and identify CD84 blockade as a therapeutic strategy to reverse tumor-induced immune suppression.

Authors

Hadas Lewinsky, Avital F. Barak, Victoria Huber, Matthias P. Kramer, Lihi Radomir, Lital Sever, Irit Orr, Vita Mirkin, Nili Dezorella, Mika Shapiro, Yosef Cohen, Lev Shvidel, Martina Seiffert, Yair Herishanu, Shirly Becker-Herman, Idit Shachar

×

Antisense STAT3 inhibitor decreases viability of myelodysplastic and leukemic stem cells
Aditi Shastri, … , Britta Will, Amit Verma
Aditi Shastri, … , Britta Will, Amit Verma
Published September 25, 2018
Citation Information: J Clin Invest. 2018;128(12):5479-5488. https://doi.org/10.1172/JCI120156.
View: Text | PDF

Antisense STAT3 inhibitor decreases viability of myelodysplastic and leukemic stem cells

  • Text
  • PDF
Abstract

Acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are associated with disease-initiating stem cells that are not eliminated by conventional therapies. Transcriptomic analysis of stem and progenitor populations in MDS and AML demonstrated overexpression of STAT3 that was validated in an independent cohort. STAT3 overexpression was predictive of a shorter survival and worse clinical features in a large MDS cohort. High STAT3 expression signature in MDS CD34+ cells was similar to known preleukemic gene signatures. Functionally, STAT3 inhibition by a clinical, antisense oligonucleotide, AZD9150, led to reduced viability and increased apoptosis in leukemic cell lines. AZD9150 was rapidly incorporated by primary MDS/AML stem and progenitor cells and led to increased hematopoietic differentiation. STAT3 knockdown also impaired leukemic growth in vivo and led to decreased expression of MCL1 and other oncogenic genes in malignant cells. These studies demonstrate that STAT3 is an adverse prognostic factor in MDS/AML and provide a preclinical rationale for studies using AZD9150 in these diseases.

Authors

Aditi Shastri, Gaurav Choudhary, Margarida Teixeira, Shanisha Gordon-Mitchell, Nandini Ramachandra, Lumie Bernard, Sanchari Bhattacharyya, Robert Lopez, Kith Pradhan, Orsolya Giricz, Goutham Ravipati, Li-Fan Wong, Sally Cole, Tushar D. Bhagat, Jonathan Feld, Yosman Dhar, Matthias Bartenstein, Victor J. Thiruthuvanathan, Amittha Wickrema, B. Hilda Ye, David A. Frank, Andrea Pellagatti, Jacqueline Boultwood, Tianyuan Zhou, Youngsoo Kim, A. Robert MacLeod, P.K. Epling-Burnette, Minwei Ye, Patricia McCoon, Richard Woessner, Ulrich Steidl, Britta Will, Amit Verma

×

Biallelic mutations in DNA ligase 1 underlie a spectrum of immune deficiencies
Patrick Maffucci, … , Jean-Laurent Casanova, Charlotte Cunningham-Rundles
Patrick Maffucci, … , Jean-Laurent Casanova, Charlotte Cunningham-Rundles
Published November 5, 2018
Citation Information: J Clin Invest. 2018;128(12):5489-5504. https://doi.org/10.1172/JCI99629.
View: Text | PDF

Biallelic mutations in DNA ligase 1 underlie a spectrum of immune deficiencies

  • Text
  • PDF
Abstract

We report the molecular, cellular, and clinical features of 5 patients from 3 kindreds with biallelic mutations in the autosomal LIG1 gene encoding DNA ligase 1. The patients exhibited hypogammaglobulinemia, lymphopenia, increased proportions of circulating γδT cells, and erythrocyte macrocytosis. Clinical severity ranged from a mild antibody deficiency to a combined immunodeficiency requiring hematopoietic stem cell transplantation. Using engineered LIG1-deficient cell lines, we demonstrated chemical and radiation defects associated with the mutant alleles, which variably impaired the DNA repair pathway. We further showed that these LIG1 mutant alleles are amorphic or hypomorphic, and exhibited variably decreased enzymatic activities, which lead to premature release of unligated adenylated DNA. The variability of the LIG1 genotypes in the patients was consistent with that of their immunological and clinical phenotypes. These data suggest that different forms of autosomal recessive, partial DNA ligase 1 deficiency underlie an immunodeficiency of variable severity.

Authors

Patrick Maffucci, Jose Chavez, Thomas J. Jurkiw, Patrick J. O’Brien, Jordan K. Abbott, Paul R. Reynolds, Austen Worth, Luigi D. Notarangelo, Kerstin Felgentreff, Patricia Cortes, Bertrand Boisson, Lin Radigan, Aurélie Cobat, Chitra Dinakar, Mohammad Ehlayel, Tawfeg Ben-Omran, Erwin W. Gelfand, Jean-Laurent Casanova, Charlotte Cunningham-Rundles

×

Tumor-derived microRNAs induce myeloid suppressor cells and predict immunotherapy resistance in melanoma
Veronica Huber, … , Monica Rodolfo, Licia Rivoltini
Veronica Huber, … , Monica Rodolfo, Licia Rivoltini
Published September 27, 2018
Citation Information: J Clin Invest. 2018;128(12):5505-5516. https://doi.org/10.1172/JCI98060.
View: Text | PDF

Tumor-derived microRNAs induce myeloid suppressor cells and predict immunotherapy resistance in melanoma

  • Text
  • PDF
Abstract

The accrual of myeloid-derived suppressor cells (MDSCs) represents a major obstacle to effective immunotherapy in cancer patients, but the mechanisms underlying this process in the human setting remain elusive. Here, we describe a set of microRNAs (miR-146a, miR-155, miR-125b, miR-100, let-7e, miR-125a, miR-146b, miR-99b) that are associated with MDSCs and resistance to treatment with immune checkpoint inhibitors in melanoma patients. The miRs were identified by transcriptional analyses as being responsible for the conversion of monocytes into MDSCs (CD14+HLA-DRneg cells) mediated by melanoma extracellular vesicles (EVs) and were shown to recreate MDSC features upon transfection. In melanoma patients, these miRs were increased in circulating CD14+ monocytes, plasma, and tumor samples, where they correlated with the myeloid cell infiltrate. In plasma, their baseline levels clustered with the clinical efficacy of CTLA-4 or programmed cell death protein 1 (PD-1) blockade. Hence, MDSC-related miRs represent an indicator of MDSC activity in cancer patients and a potential blood marker of a poor immunotherapy outcome.

Authors

Veronica Huber, Viviana Vallacchi, Viktor Fleming, Xiaoying Hu, Agata Cova, Matteo Dugo, Eriomina Shahaj, Roberta Sulsenti, Elisabetta Vergani, Paola Filipazzi, Angela De Laurentiis, Luca Lalli, Lorenza Di Guardo, Roberto Patuzzo, Barbara Vergani, Elena Casiraghi, Mara Cossa, Ambra Gualeni, Valentina Bollati, Flavio Arienti, Filippo De Braud, Luigi Mariani, Antonello Villa, Peter Altevogt, Viktor Umansky, Monica Rodolfo, Licia Rivoltini

×

PLK1 stabilizes a MYC-dependent kinase network in aggressive B cell lymphomas
Yuan Ren, … , Kai Fu, Jianguo Tao
Yuan Ren, … , Kai Fu, Jianguo Tao
Published September 27, 2018
Citation Information: J Clin Invest. 2018;128(12):5517-5530. https://doi.org/10.1172/JCI122533.
View: Text | PDF

PLK1 stabilizes a MYC-dependent kinase network in aggressive B cell lymphomas

  • Text
  • PDF
Abstract

Concordant activation of MYC and BCL-2 oncoproteins in double-hit lymphoma (DHL) results in aggressive disease that is refractory to treatment. By integrating activity-based proteomic profiling and drug screens, polo-like kinase-1 (PLK1) was identified as an essential regulator of the MYC-dependent kinome in DHL. Notably, PLK1 was expressed at high levels in DHL, correlated with MYC expression, and connoted poor outcome. Further, PLK1 signaling augmented MYC protein stability, and in turn, MYC directly induced PLK1 transcription, establishing a feed-forward MYC-PLK1 circuit in DHL. Finally, inhibition of PLK1 triggered degradation of MYC and of the antiapoptotic protein MCL-1, and PLK1 inhibitors showed synergy with BCL-2 antagonists in blocking DHL cell growth, survival, and tumorigenicity, supporting clinical targeting of PLK1 in DHL.

Authors

Yuan Ren, Chengfeng Bi, Xiaohong Zhao, Tint Lwin, Cheng Wang, Ji Yuan, Ariosto S. Silva, Bijal D. Shah, Bin Fang, Tao Li, John M. Koomen, Huijuan Jiang, Julio C. Chavez, Lan V. Pham, Praneeth R. Sudalagunta, Lixin Wan, Xuefeng Wang, William S. Dalton, Lynn C. Moscinski, Kenneth H. Shain, Julie Vose, John L. Cleveland, Eduardo M. Sotomayor, Kai Fu, Jianguo Tao

×

Androgen receptor functions as transcriptional repressor of cancer-associated fibroblast activation
Andrea Clocchiatti, … , Berna C. Özdemir, G. Paolo Dotto
Andrea Clocchiatti, … , Berna C. Özdemir, G. Paolo Dotto
Published November 5, 2018
Citation Information: J Clin Invest. 2018;128(12):5531-5548. https://doi.org/10.1172/JCI99159.
View: Text | PDF

Androgen receptor functions as transcriptional repressor of cancer-associated fibroblast activation

  • Text
  • PDF
Abstract

The aging-associated increase of cancer risk is linked with stromal fibroblast senescence and concomitant cancer-associated fibroblast (CAF) activation. Surprisingly little is known about the role of androgen receptor (AR) signaling in this context. We have found downmodulated AR expression in dermal fibroblasts underlying premalignant skin cancer lesions (actinic keratoses and dysplastic nevi) as well as in CAFs from the 3 major skin cancer types, squamous cell carcinomas (SCCs), basal cell carcinomas, and melanomas. Functionally, decreased AR expression in primary human dermal fibroblasts (HDFs) from multiple individuals induced early steps of CAF activation, and in an orthotopic skin cancer model, AR loss in HDFs enhanced tumorigenicity of SCC and melanoma cells. Forming a complex, AR converged with CSL/RBP-Jκ in transcriptional repression of key CAF effector genes. AR and CSL were positive determinants of each other’s expression, with BET inhibitors, which counteract the effects of decreased CSL, restoring AR expression and activity in CAFs. Increased AR expression in these cells overcame the consequences of CSL loss and was by itself sufficient to block the growth and tumor-enhancing effects of CAFs on neighboring cancer cells. As such, the findings establish AR as a target for stroma-focused cancer chemoprevention and treatment.

Authors

Andrea Clocchiatti, Soumitra Ghosh, Maria-Giuseppina Procopio, Luigi Mazzeo, Pino Bordignon, Paola Ostano, Sandro Goruppi, Giulia Bottoni, Atul Katarkar, Mitchell Levesque, Peter Kölblinger, Reinhard Dummer, Victor Neel, Berna C. Özdemir, G. Paolo Dotto

×

An osteopontin/CD44 immune checkpoint controls CD8+ T cell activation and tumor immune evasion
John D. Klement, … , Keiko Ozato, Kebin Liu
John D. Klement, … , Keiko Ozato, Kebin Liu
Published November 5, 2018
Citation Information: J Clin Invest. 2018;128(12):5549-5560. https://doi.org/10.1172/JCI123360.
View: Text | PDF

An osteopontin/CD44 immune checkpoint controls CD8+ T cell activation and tumor immune evasion

  • Text
  • PDF
Abstract

Despite breakthroughs in immune checkpoint inhibitor (ICI) immunotherapy, not all human cancers respond to ICI immunotherapy and a large fraction of patients with the responsive types of cancers do not respond to current ICI immunotherapy. This clinical conundrum suggests that additional immune checkpoints exist. We report here that interferon regulatory factor 8 (IRF8) deficiency led to impairment of cytotoxic T lymphocyte (CTL) activation and allograft tumor tolerance. However, analysis of chimera mice with competitive reconstitution of WT and IRF8-KO bone marrow cells as well as mice with IRF8 deficiency only in T cells indicated that IRF8 plays no intrinsic role in CTL activation. Instead, IRF8 functioned as a repressor of osteopontin (OPN), the physiological ligand for CD44 on T cells, in CD11b+Ly6CloLy6G+ myeloid cells and OPN acted as a potent T cell suppressor. IRF8 bound to the Spp1 promoter to repress OPN expression in colon epithelial cells, and colon carcinoma exhibited decreased IRF8 and increased OPN expression. The elevated expression of OPN in human colon carcinoma was correlated with decreased patient survival. Our data indicate that myeloid and tumor cell–expressed OPN acts as an immune checkpoint to suppress T cell activation and confer host tumor immune tolerance.

Authors

John D. Klement, Amy V. Paschall, Priscilla S. Redd, Mohammed L. Ibrahim, Chunwan Lu, Dafeng Yang, Esteban Celis, Scott I. Abrams, Keiko Ozato, Kebin Liu

×

βIV-Spectrin regulates STAT3 targeting to tune cardiac response to pressure overload
Sathya D. Unudurthi, … , Peter J. Mohler, Thomas J. Hund
Sathya D. Unudurthi, … , Peter J. Mohler, Thomas J. Hund
Published September 18, 2018
Citation Information: J Clin Invest. 2018;128(12):5561-5572. https://doi.org/10.1172/JCI99245.
View: Text | PDF

βIV-Spectrin regulates STAT3 targeting to tune cardiac response to pressure overload

  • Text
  • PDF
Abstract

Heart failure (HF) remains a major source of morbidity and mortality in the US. The multifunctional Ca2+/calmodulin-dependent kinase II (CaMKII) has emerged as a critical regulator of cardiac hypertrophy and failure, although the mechanisms remain unclear. Previous studies have established that the cytoskeletal protein βIV-spectrin coordinates local CaMKII signaling. Here, we sought to determine the role of a spectrin-CaMKII complex in maladaptive remodeling in HF. Chronic pressure overload (6 weeks of transaortic constriction [TAC]) induced a decrease in cardiac function in WT mice but not in animals expressing truncated βIV-spectrin lacking spectrin-CaMKII interaction (qv3J mice). Underlying the observed differences in function was an unexpected differential regulation of STAT3-related genes in qv3J TAC hearts. In vitro experiments demonstrated that βIV-spectrin serves as a target for CaMKII phosphorylation, which regulates its stability. Cardiac-specific βIV-spectrin–KO (βIV-cKO) mice showed STAT3 dysregulation, fibrosis, and decreased cardiac function at baseline, similar to what was observed with TAC in WT mice. STAT3 inhibition restored normal cardiac structure and function in βIV-cKO and WT TAC hearts. Our studies identify a spectrin-based complex essential for regulation of the cardiac response to chronic pressure overload. We anticipate that strategies targeting the new spectrin-based “statosome” will be effective at suppressing maladaptive remodeling in response to chronic stress.

Authors

Sathya D. Unudurthi, Drew Nassal, Amara Greer-Short, Nehal Patel, Taylor Howard, Xianyao Xu, Birce Onal, Tony Satroplus, Deborah Hong, Cemantha Lane, Alyssa Dalic, Sara N. Koenig, Adam C. Lehnig, Lisa A. Baer, Hassan Musa, Kristin I. Stanford, Sakima Smith, Peter J. Mohler, Thomas J. Hund

×

Notch signaling suppresses glucose metabolism in mesenchymal progenitors to restrict osteoblast differentiation
Seung-Yon Lee, Fanxin Long
Seung-Yon Lee, Fanxin Long
Published October 4, 2018
Citation Information: J Clin Invest. 2018;128(12):5573-5586. https://doi.org/10.1172/JCI96221.
View: Text | PDF

Notch signaling suppresses glucose metabolism in mesenchymal progenitors to restrict osteoblast differentiation

  • Text
  • PDF
Abstract

Notch signaling critically controls cell fate decisions in mammals, both during embryogenesis and in adults. In the skeleton, Notch suppresses osteoblast differentiation and sustains bone marrow mesenchymal progenitors during postnatal life. Stabilizing mutations of Notch2 cause Hajdu-Cheney syndrome, which is characterized by early-onset osteoporosis in humans, but the mechanism whereby Notch inhibits bone accretion is not fully understood. Here, we report that activation of Notch signaling by either Jagged1 or the Notch2 intracellular domain suppresses glucose metabolism and osteoblast differentiation in primary cultures of bone marrow mesenchymal progenitors. Importantly, deletion of Notch2 in the limb mesenchyme increases both glycolysis and bone formation in the long bones of postnatal mice, whereas pharmacological reduction of glycolysis abrogates excessive bone formation. Mechanistically, Notch reduces the expression of glycolytic and mitochondrial complex I genes, resulting in a decrease in mitochondrial respiration, superoxide production, and AMPK activity. Forced activation of AMPK restores glycolysis in the face of Notch signaling. Thus, suppression of glucose metabolism contributes to the mechanism, whereby Notch restricts osteoblastogenesis from bone marrow mesenchymal progenitors.

Authors

Seung-Yon Lee, Fanxin Long

×

Gα12 ablation exacerbates liver steatosis and obesity by suppressing USP22/SIRT1-regulated mitochondrial respiration
Tae Hyun Kim, … , Cheol Soo Choi, Sang Geon Kim
Tae Hyun Kim, … , Cheol Soo Choi, Sang Geon Kim
Published October 9, 2018
Citation Information: J Clin Invest. 2018;128(12):5587-5602. https://doi.org/10.1172/JCI97831.
View: Text | PDF

Gα12 ablation exacerbates liver steatosis and obesity by suppressing USP22/SIRT1-regulated mitochondrial respiration

  • Text
  • PDF
Abstract

Nonalcoholic fatty liver disease (NAFLD) arises from mitochondrial dysfunction under sustained imbalance between energy intake and expenditure, but the underlying mechanisms controlling mitochondrial respiration have not been entirely understood. Heterotrimeric G proteins converge with activated GPCRs to modulate cell-signaling pathways to maintain metabolic homeostasis. Here, we investigated the regulatory role of G protein α12 (Gα12) on hepatic lipid metabolism and whole-body energy expenditure in mice. Fasting increased Gα12 levels in mouse liver. Gα12 ablation markedly augmented fasting-induced hepatic fat accumulation. cDNA microarray analysis from Gna12-KO liver revealed that the Gα12-signaling pathway regulated sirtuin 1 (SIRT1) and PPARα, which are responsible for mitochondrial respiration. Defective induction of SIRT1 upon fasting was observed in the liver of Gna12-KO mice, which was reversed by lentivirus-mediated Gα12 overexpression in hepatocytes. Mechanistically, Gα12 stabilized SIRT1 protein through transcriptional induction of ubiquitin-specific peptidase 22 (USP22) via HIF-1α increase. Gα12 levels were markedly diminished in liver biopsies from NAFLD patients. Consistently, Gna12-KO mice fed a high-fat diet displayed greater susceptibility to diet-induced liver steatosis and obesity due to decrease in energy expenditure. Our results demonstrate that Gα12 regulates SIRT1-dependent mitochondrial respiration through HIF-1α–dependent USP22 induction, identifying Gα12 as an upstream molecule that contributes to the regulation of mitochondrial energy expenditure.

Authors

Tae Hyun Kim, Yoon Mee Yang, Chang Yeob Han, Ja Hyun Koo, Hyunhee Oh, Su Sung Kim, Byoung Hoon You, Young Hee Choi, Tae-Sik Park, Chang Ho Lee, Hitoshi Kurose, Mazen Noureddin, Ekihiro Seki, Yu-Jui Yvonne Wan, Cheol Soo Choi, Sang Geon Kim

×

Fbxo22-mediated KDM4B degradation determines selective estrogen receptor modulator activity in breast cancer
Yoshikazu Johmura, … , Tomohiko Ohta, Makoto Nakanishi
Yoshikazu Johmura, … , Tomohiko Ohta, Makoto Nakanishi
Published November 12, 2018
Citation Information: J Clin Invest. 2018;128(12):5603-5619. https://doi.org/10.1172/JCI121679.
View: Text | PDF

Fbxo22-mediated KDM4B degradation determines selective estrogen receptor modulator activity in breast cancer

  • Text
  • PDF
Abstract

The agonistic/antagonistic biocharacter of selective estrogen receptor modulators (SERMs) can have therapeutic advantages, particularly in the case of premenopausal breast cancers. Although the contradictory effects of these modulators have been studied in terms of crosstalk between the estrogen receptor α (ER) and coactivator dynamics and growth factor signaling, the molecular basis of these mechanisms is still obscure. We identify a series of regulatory mechanisms controlling cofactor dynamics on ER and SERM function, whose activities require F-box protein 22 (Fbxo22). Skp1, Cullin1, F-box–containing complex (SCFFbxo22) ubiquitylated lysine demethylase 4B (KDM4B) complexed with tamoxifen-bound (TAM-bound) ER, whose degradation released steroid receptor coactivator (SRC) from ER. Depletion of Fbxo22 resulted in ER-dependent transcriptional activation via transactivation function 1 (AF1) function, even in the presence of SERMs. In living cells, TAM released SRC and KDM4B from ER in a Fbxo22-dependent manner. SRC release by TAM required Fbxo22 on almost all ER-SRC–bound enhancers and promoters. TAM failed to prevent the growth of Fbxo22-depleted, ER-positive breast cancers both in vitro and in vivo. Clinically, a low level of Fbxo22 in tumor tissues predicted a poorer outcome in ER-positive/human epidermal growth factor receptor type 2–negative (HER2-negative) breast cancers with high hazard ratios, independently of other markers such as Ki-67 and node status. We propose that the level of Fbxo22 in tumor tissues defines a new subclass of ER-positive breast cancers for which SCFFbxo22-mediated KDM4B degradation in patients can be a therapeutic target for the next generation of SERMs.

Authors

Yoshikazu Johmura, Ichiro Maeda, Narumi Suzuki, Wenwen Wu, Atsushi Goda, Mariko Morita, Kiyoshi Yamaguchi, Mizuki Yamamoto, Satoi Nagasawa, Yasuyuki Kojima, Koichiro Tsugawa, Natsuko Inoue, Yasuo Miyoshi, Tomo Osako, Futoshi Akiyama, Reo Maruyama, Jun-ichiro Inoue, Yoichi Furukawa, Tomohiko Ohta, Makoto Nakanishi

×

Temporal dynamics of Wnt-dependent transcriptome reveal an oncogenic Wnt/MYC/ribosome axis
Babita Madan, … , Enrico Petretto, David M. Virshup
Babita Madan, … , Enrico Petretto, David M. Virshup
Published October 9, 2018
Citation Information: J Clin Invest. 2018;128(12):5620-5633. https://doi.org/10.1172/JCI122383.
View: Text | PDF

Temporal dynamics of Wnt-dependent transcriptome reveal an oncogenic Wnt/MYC/ribosome axis

  • Text
  • PDF
Abstract

Activating mutations in the Wnt pathway drive a variety of cancers, but the specific targets and pathways activated by Wnt ligands are not fully understood. To bridge this knowledge gap, we performed a comprehensive time-course analysis of Wnt-dependent signaling pathways in an orthotopic model of Wnt-addicted pancreatic cancer, using a porcupine (PORCN) inhibitor currently in clinical trials, and validated key results in additional Wnt-addicted models. The temporal analysis of the drug-perturbed transcriptome demonstrated direct and indirect regulation of more than 3,500 Wnt-activated genes (23% of the transcriptome). Regulation was both via Wnt/β-catenin and through the modulation of protein abundance of important transcription factors, including MYC, via Wnt-dependent stabilization of proteins (Wnt/STOP). Our study identifies a central role of Wnt/β-catenin and Wnt/STOP signaling in controlling ribosome biogenesis, a key driver of cancer proliferation.

Authors

Babita Madan, Nathan Harmston, Gahyathiri Nallan, Alex Montoya, Peter Faull, Enrico Petretto, David M. Virshup

×

Insulin receptor signaling regulates renal collecting duct and intercalated cell antibacterial defenses
Matthew J. Murtha, … , Brian Becknell, John David Spencer
Matthew J. Murtha, … , Brian Becknell, John David Spencer
Published November 12, 2018
Citation Information: J Clin Invest. 2018;128(12):5634-5646. https://doi.org/10.1172/JCI98595.
View: Text | PDF

Insulin receptor signaling regulates renal collecting duct and intercalated cell antibacterial defenses

  • Text
  • PDF
Abstract

People with diabetes mellitus have increased infection risk. With diabetes, urinary tract infection (UTI) is more common and has worse outcomes. Here, we investigate how diabetes and insulin resistance impact the kidney’s innate defenses and urine sterility. We report that type 2 diabetic mice have increased UTI risk. Moreover, insulin-resistant prediabetic mice have increased UTI susceptibility, independent of hyperglycemia or glucosuria. To identify how insulin resistance affects renal antimicrobial defenses, we genetically deleted the insulin receptor in the kidney’s collecting tubules and intercalated cells. Intercalated cells, located within collecting tubules, contribute to epithelial defenses by acidifying the urine and secreting antimicrobial peptides (AMPs) into the urinary stream. Collecting duct and intercalated cell–specific insulin receptor deletion did not impact urine acidification, suppressed downstream insulin-mediated targets and AMP expression, and increased UTI susceptibility. Specifically, insulin receptor–mediated signaling regulates AMPs, including lipocalin 2 and ribonuclease 4, via phosphatidylinositol-3-kinase signaling. These data suggest that insulin signaling plays a critical role in renal antibacterial defenses.

Authors

Matthew J. Murtha, Tad Eichler, Kristin Bender, Jackie Metheny, Birong Li, Andrew L. Schwaderer, Claudia Mosquera, Cindy James, Laura Schwartz, Brian Becknell, John David Spencer

×

Blocking immunoinhibitory receptor LILRB2 reprograms tumor-associated myeloid cells and promotes antitumor immunity
Hui-Ming Chen, … , Ping-Ying Pan, Shu-Hsia Chen
Hui-Ming Chen, … , Ping-Ying Pan, Shu-Hsia Chen
Published October 22, 2018
Citation Information: J Clin Invest. 2018;128(12):5647-5662. https://doi.org/10.1172/JCI97570.
View: Text | PDF

Blocking immunoinhibitory receptor LILRB2 reprograms tumor-associated myeloid cells and promotes antitumor immunity

  • Text
  • PDF
Abstract

Tumor-associated myeloid cells maintain immunosuppressive microenvironments within tumors. Identification of myeloid-specific receptors to modulate tumor-associated macrophage and myeloid-derived suppressor cell (MDSC) functions remains challenging. The leukocyte immunoglobulin-like receptor B (LILRB) family members are negative regulators of myeloid cell activation. We investigated how LILRB targeting could modulate tumor-associated myeloid cell function. LILRB2 antagonism inhibited receptor-mediated activation of SHP1/2 and enhanced proinflammatory responses. LILRB2 antagonism also inhibited AKT and STAT6 activation in the presence of M-CSF and IL-4. Transcriptome analysis revealed that LILRB2 antagonism altered genes involved in cell cytoskeleton remodeling, lipid/cholesterol metabolism, and endosomal sorting pathways, as well as changed differentiation gene networks associated with inflammatory myeloid cells as opposed to their alternatively activated phenotype. LILRB2 blockade effectively suppressed granulocytic MDSC and Treg infiltration and significantly promoted in vivo antitumor effects of T cell immune checkpoint inhibitors. Furthermore, LILRB2 blockade polarized tumor-infiltrating myeloid cells from non–small cell lung carcinoma tumor tissues toward an inflammatory phenotype. Our studies suggest that LILRB2 can potentially act as a myeloid immune checkpoint by reprogramming tumor-associated myeloid cells and provoking antitumor immunity.

Authors

Hui-Ming Chen, William van der Touw, Yuan Shuo Wang, Kyeongah Kang, Sunny Mai, Jilu Zhang, Dayanira Alsina-Beauchamp, James A. Duty, Sathish Kumar Mungamuri, Bin Zhang, Thomas Moran, Richard Flavell, Stuart Aaronson, Hong-Ming Hu, Hisashi Arase, Suresh Ramanathan, Raja Flores, Ping-Ying Pan, Shu-Hsia Chen

×

Accessory heterozygous mutations in cone photoreceptor CNGA3 exacerbate CNG channel–associated retinopathy
Markus Burkard, … , Bernd Wissinger, Peter Ruth
Markus Burkard, … , Bernd Wissinger, Peter Ruth
Published November 12, 2018
Citation Information: J Clin Invest. 2018;128(12):5663-5675. https://doi.org/10.1172/JCI96098.
View: Text | PDF

Accessory heterozygous mutations in cone photoreceptor CNGA3 exacerbate CNG channel–associated retinopathy

  • Text
  • PDF
Abstract

Mutations in CNGA3 and CNGB3, the genes encoding the subunits of the tetrameric cone photoreceptor cyclic nucleotide–gated ion channel, cause achromatopsia, a congenital retinal disorder characterized by loss of cone function. However, a small number of patients carrying the CNGB3/c.1208G>A;p.R403Q mutation present with a variable retinal phenotype ranging from complete and incomplete achromatopsia to moderate cone dysfunction or progressive cone dystrophy. By exploring a large patient cohort and published cases, we identified 16 unrelated individuals who were homozygous or (compound-)heterozygous for the CNGB3/c.1208G>A;p.R403Q mutation. In-depth genetic and clinical analysis revealed a co-occurrence of a mutant CNGA3 allele in a high proportion of these patients (10 of 16), likely contributing to the disease phenotype. To verify these findings, we generated a Cngb3R403Q/R403Q mouse model, which was crossbred with Cnga3-deficient (Cnga3–/–) mice to obtain triallelic Cnga3+/– Cngb3R403Q/R403Q mutants. As in human subjects, there was a striking genotype-phenotype correlation, since the presence of 1 Cnga3-null allele exacerbated the cone dystrophy phenotype in Cngb3R403Q/R403Q mice. These findings strongly suggest a digenic and triallelic inheritance pattern in a subset of patients with achromatopsia/severe cone dystrophy linked to the CNGB3/p.R403Q mutation, with important implications for diagnosis, prognosis, and genetic counseling.

Authors

Markus Burkard, Susanne Kohl, Timm Krätzig, Naoyuki Tanimoto, Christina Brennenstuhl, Anne E. Bausch, Katrin Junger, Peggy Reuter, Vithiyanjali Sothilingam, Susanne C. Beck, Gesine Huber, Xi-Qin Ding, Anja K. Mayer, Britta Baumann, Nicole Weisschuh, Ditta Zobor, Gesa-Astrid Hahn, Ulrich Kellner, Sascha Venturelli, Elvir Becirovic, Peter Charbel Issa, Robert K. Koenekoop, Günther Rudolph, John Heckenlively, Paul Sieving, Richard G. Weleber, Christian Hamel, Xiangang Zong, Martin Biel, Robert Lukowski, Matthias W. Seeliger, Stylianos Michalakis, Bernd Wissinger, Peter Ruth

×
Retraction
Regenerating new heart with stem cells
Piero Anversa, … , Marcello Rota, Annarosa Leri
Piero Anversa, … , Marcello Rota, Annarosa Leri
Published December 3, 2018
Citation Information: J Clin Invest. 2018;128(12):5676-5676. https://doi.org/10.1172/JCI126075.
View: Text | PDF | Amended Article

Regenerating new heart with stem cells

  • Text
  • PDF
Abstract

Authors

Piero Anversa, Jan Kajstura, Marcello Rota, Annarosa Leri

×
Erratum
Airway fractal dimension predicts respiratory morbidity and mortality in COPD
Sandeep Bodduluri, … , Surya P. Bhatt, COPDGene Investigators
Sandeep Bodduluri, … , Surya P. Bhatt, COPDGene Investigators
Published December 3, 2018
Citation Information: J Clin Invest. 2018;128(12):5676-5676. https://doi.org/10.1172/JCI125987.
View: Text | PDF | Amended Article

Airway fractal dimension predicts respiratory morbidity and mortality in COPD

  • Text
  • PDF
Abstract

Authors

Sandeep Bodduluri, Abhilash S. Kizhakke Puliyakote, Sarah E. Gerard, Joseph M. Reinhardt, Eric A. Hoffman, John D. Newell Jr., Hrudaya P. Nath, MeiLan K. Han, George R. Washko, Raúl San José Estépar, Mark T. Dransfield, Surya P. Bhatt, COPDGene Investigators

×
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts