Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Seeing the forest for the trees: fractal dimensions measure COPD airway remodeling
Eleanor M. Dunican
Eleanor M. Dunican
Published October 29, 2018
Citation Information: J Clin Invest. 2018;128(12):5203-5205. https://doi.org/10.1172/JCI124776.
View: Text | PDF
Commentary

Seeing the forest for the trees: fractal dimensions measure COPD airway remodeling

  • Text
  • PDF
Abstract

Chronic obstructive pulmonary disease (COPD) is extremely heterogenous in its effects on airway remodeling. Parsing the complex and interrelated morphologic changes and understanding their contribution to disease severity has posed a significant challenge to the field. In the current issue of the JCI, Bodduluri et al. measured the complex effects of COPD on the airway tree using airway fractal dimension (AFD) on computerized tomography in a large cohort of smokers with and without COPD. They found that lower AFD was independently associated with disease severity and mortality in COPD. This work highlights AFD as a noninvasive approach to analyze complex changes in airway geometry.

Authors

Eleanor M. Dunican

×

Figure 1

Fractional dimensions and self-similarity are defining properties of fractal geometry.

Options: View larger image (or click on image) Download as PowerPoint
Fractional dimensions and self-similarity are defining properties of fra...
(A) Two-dimensional airway trees of varying fractal dimensions (Df) ranging from 1.09 to 2. The airway geometry becomes more space filling as Df approaches 2, the Euclidean dimension of a plane (24). (B) Three-dimensional model of the human airway tree showing self-similarity at different scales (25).

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts