Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

Usage Information

Th1 memory differentiates recombinant from live herpes zoster vaccines
Myron J. Levin, … , Nancy Lang, Adriana Weinberg
Myron J. Levin, … , Nancy Lang, Adriana Weinberg
Published July 19, 2018
Citation Information: J Clin Invest. 2018;128(10):4429-4440. https://doi.org/10.1172/JCI121484.
View: Text | PDF
Research Article Infectious disease Vaccines

Th1 memory differentiates recombinant from live herpes zoster vaccines

  • Text
  • PDF
Abstract

The adjuvanted varicella-zoster virus (VZV) glycoprotein E (gE) subunit herpes zoster vaccine (HZ/su) confers higher protection against HZ than the live attenuated zoster vaccine (ZV). To understand the immunologic basis for the different efficacies of the vaccines, we compared immune responses to the vaccines in adults 50 to 85 years old. gE-specific T cells were very low/undetectable before vaccination when analyzed by FluoroSpot and flow cytometry. Both ZV and HZ/su increased gE-specific responses, but at peak memory response (PMR) after vaccination (30 days after ZV or after the second dose of HZ/su), gE-specific CD4+ and CD8+ T cell responses were 10-fold or more higher in HZ/su compared with ZV recipients. Comparing the vaccines, T cell memory responses, including gE–IL-2+ and VZV–IL-2+ spot-forming cells (SFCs), were higher in HZ/su recipients and cytotoxic and effector responses were lower. At 1 year after vaccination, all gE-Th1 and VZV–IL-2+ SFCs remained higher in HZ/su compared with ZV recipients. Mediation analyses showed that IL-2+ PMR were necessary for the persistence of Th1 responses to either vaccine and VZV–IL-2+ PMR explained 73% of the total effect of HZ/su on persistence. This emphasizes the biological importance of the memory responses, which were clearly superior in HZ/su compared with ZV participants.

Authors

Myron J. Levin, Miranda E. Kroehl, Michael J. Johnson, Andrew Hammes, Dominik Reinhold, Nancy Lang, Adriana Weinberg

×

Usage data is cumulative from January 2020 through January 2021.

Usage JCI PMC
Text version 1,093 220
PDF 208 753
Figure 179 0
Table 163 0
Supplemental data 74 3
Citation downloads 27 0
Totals 1,744 976
Total Views 2,720

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts