Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Purinergic P2X4 receptors and mitochondrial ATP production regulate T cell migration
Carola Ledderose, … , Gary A. Visner, Wolfgang G. Junger
Carola Ledderose, … , Gary A. Visner, Wolfgang G. Junger
Published June 12, 2018
Citation Information: J Clin Invest. 2018;128(8):3583-3594. https://doi.org/10.1172/JCI120972.
View: Text | PDF
Research Article Cell biology Transplantation

Purinergic P2X4 receptors and mitochondrial ATP production regulate T cell migration

  • Text
  • PDF
Abstract

T cells must migrate in order to encounter antigen-presenting cells (APCs) and to execute their varied functions in immune defense and inflammation. ATP release and autocrine signaling through purinergic receptors contribute to T cell activation at the immune synapse that T cells form with APCs. Here, we show that T cells also require ATP release and purinergic signaling for their migration to APCs. We found that the chemokine stromal-derived factor-1α (SDF-1α) triggered mitochondrial ATP production, rapid bursts of ATP release, and increased migration of primary human CD4+ T cells. This process depended on pannexin-1 ATP release channels and autocrine stimulation of P2X4 receptors. SDF-1α stimulation caused localized accumulation of mitochondria with P2X4 receptors near the front of cells, resulting in a feed-forward signaling mechanism that promotes cellular Ca2+ influx and sustains mitochondrial ATP synthesis at levels needed for pseudopod protrusion, T cell polarization, and cell migration. Inhibition of P2X4 receptors blocked the activation and migration of T cells in vitro. In a mouse lung transplant model, P2X4 receptor antagonist treatment prevented the recruitment of T cells into allograft tissue and the rejection of lung transplants. Our findings suggest that P2X4 receptors are therapeutic targets for immunomodulation in transplantation and inflammatory diseases.

Authors

Carola Ledderose, Kaifeng Liu, Yutaka Kondo, Christian J. Slubowski, Thomas Dertnig, Sara Denicoló, Mona Arbab, Johannes Hubner, Kirstin Konrad, Mahtab Fakhari, James A. Lederer, Simon C. Robson, Gary A. Visner, Wolfgang G. Junger

×

Full Text PDF | Download (6.33 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts