Abstract

Extraintestinally invasive Escherichia coli (EC) that possess both a complete LPS and K1 capsule evade both complement-mediated bacteriolysis and neutrophil-mediated killing. Since C3H/HeJ mice that are hyporesponsive to LPS were uniquely susceptible to lethal infection with EC of this phenotype, we speculated there was an LPS-initiated host defense mechanism against this pathogenic phenotype. The LPS-normoresponsive C3H/HeN as well as the C3H/HeJ mice cleared these EC from the circulation within 4 h of intravenous administration. Whereas electron micrographs of the liver demonstrated these EC undergoing degeneration within the phagolysosomes of of both macrophages and Kupffer cells of C3H/HeN mice, these EC replicated within these cells of the C3H/HeJ mice. Restoration of anti-EC activity of C3H/HeJ mice occurred with activation of Kupffer cells and peritoneal macrophages in vivo with BCG and in vitro with IFN-gamma, but not with LPS. Pretreatment of C3H/HeJ mice with a combination of recombinant murine IL-1 and TNF-alpha also restored the killing of K1(+)-EC but did not enhance the killing of a K1(-)-EC mutant. These data are consistent with the hypothesis that (a) there is no intrinsic inability of C3H/HeJ phagocytes to kill EC, but (b) an LPS-initiated, cytokine-mediated host defense mechanism is required for such killing. These studies emphasize the importance of bacterial surface characteristics in the interaction with specific host defenses.

Authors

A Cross, L Asher, M Seguin, L Yuan, N Kelly, C Hammack, J Sadoff, P Gemski Jr

×

Other pages: