Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117267

Increased epinephrine and skeletal muscle responses to hypoglycemia in non-insulin-dependent diabetes mellitus.

H Shamoon, S Friedman, C Canton, L Zacharowicz, M Hu, and L Rossetti

Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York 10461.

Find articles by Shamoon, H. in: PubMed | Google Scholar

Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York 10461.

Find articles by Friedman, S. in: PubMed | Google Scholar

Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York 10461.

Find articles by Canton, C. in: PubMed | Google Scholar

Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York 10461.

Find articles by Zacharowicz, L. in: PubMed | Google Scholar

Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York 10461.

Find articles by Hu, M. in: PubMed | Google Scholar

Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York 10461.

Find articles by Rossetti, L. in: PubMed | Google Scholar

Published June 1, 1994 - More info

Published in Volume 93, Issue 6 on June 1, 1994
J Clin Invest. 1994;93(6):2562–2571. https://doi.org/10.1172/JCI117267.
© 1994 The American Society for Clinical Investigation
Published June 1, 1994 - Version history
View PDF
Abstract

We evaluated skeletal muscle counterregulation during hypoglycemia in nine subjects with non-insulin-dependent diabetes mellitus (NIDDM) (HbA1c 9.4 +/- 0.5%, nl < 6.2%) compared with six normal controls, matched for age (51 +/- 3 and 49 +/- 5 yr, respectively) and body mass index (27.3 +/- 1.2 and 27.0 +/- 2.1 kg/m2). After 60 min of euglycemia (plasma insulin approximately 140 microU/ml), plasma glucose was lowered to 62 +/- 2 mg/dl by 120 min. Hypoglycemia induced a 2.2-fold greater increase in plasma epinephrine in NIDDM (P < 0.001), while the plasma glucagon response was blunted (P < 0.01). Hepatic glucose output ([3H-3]glucose) suppressed similarly during euglycemia, but during hypoglycemia was greater in NIDDM (P < 0.005). Conversely, glucose uptake during euglycemia was 150% greater in controls (P < 0.01) and remained persistently higher than in NIDDM during hypoglycemia. In NIDDM, plasma FFA concentrations were approximately fivefold greater (P < 0.001), and plasma lactate levels were approximately 40% higher than in controls during hypoglycemia (P < 0.01); the rates of glycolysis from plasma glucose were similar in the two groups despite a 49% lower rate of glucose uptake in NIDDM (3.4 +/- 0.9 vs. 6.9 +/- 1.3 mg/kg per minute, P < 0.001). Muscle glycogen synthase activity fell by 42% with hypoglycemia (P < 0.01) in NIDDM but not in controls. In addition, glycogen phosphorylase was activated by 56% during hypoglycemia in NIDDM only (P < 0.01). Muscle glucose-6-phosphate concentrations rose during hypoglycemia by a twofold greater increment in NIDDM (P < 0.01). Thus, skeletal muscle participates in hypoglycemia counterregulation in NIDDM, directly by decreased removal of plasma glucose and, indirectly, by providing lactate for hepatic gluconeogenesis. Consequently, in addition to inherent insulin resistance in NIDDM, the enhanced plasma epinephrine response during hypoglycemia may partially offset impaired glucagon secretion and counteract the effects of hyperinsulinemia on liver, fat, and skeletal muscle.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2562
page 2562
icon of scanned page 2563
page 2563
icon of scanned page 2564
page 2564
icon of scanned page 2565
page 2565
icon of scanned page 2566
page 2566
icon of scanned page 2567
page 2567
icon of scanned page 2568
page 2568
icon of scanned page 2569
page 2569
icon of scanned page 2570
page 2570
icon of scanned page 2571
page 2571
Version history
  • Version 1 (June 1, 1994): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts