Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114420

Cerebroventricular calcitonin gene-related peptide inhibits rat duodenal bicarbonate secretion by release of norepinephrine and vasopressin.

H J Lenz and M R Brown

Department of Medicine, University of Hamburg, Federal Republic of Germany.

Find articles by Lenz, H. in: JCI | PubMed | Google Scholar

Department of Medicine, University of Hamburg, Federal Republic of Germany.

Find articles by Brown, M. in: JCI | PubMed | Google Scholar

Published January 1, 1990 - More info

Published in Volume 85, Issue 1 on January 1, 1990
J Clin Invest. 1990;85(1):25–32. https://doi.org/10.1172/JCI114420.
© 1990 The American Society for Clinical Investigation
Published January 1, 1990 - Version history
View PDF
Abstract

Proximal duodenal bicarbonate secretion is an important factor in humans and animals protecting the mucosa against acid-peptic damage. This study examined the mechanisms responsible for the central nervous system regulation of duodenal bicarbonate secretion by calcitonin gene-related peptide (CGRP) in unrestrained rats. Cerebroventricular administration of rat CGRP significantly inhibited basal duodenal bicarbonate secretion as well as the stimulatory effects of vasoactive intestinal peptide, neurotensin, a luminal PGE1 analogue, misoprostol, and hydrochloric acid. The inhibitory effects of cerebroventricular CGRP were abolished by ganglionic blockade with chlorisondamine, significantly attenuated by noradrenergic blockade with bretylium, and enhanced by vagotomy. Inhibition of duodenal bicarbonate secretion induced by CGRP coincided with significant increases in plasma norepinephrine (NE) and vasopressin concentrations. The alpha adrenergic receptor antagonist, phentolamine, and the vasopressin V1 receptor antagonist, (1-deaminopenicillamine, 2-[O-methyl]Tyr, 8-Arg)-vasopressin, given intravenously reversed the central inhibitory effect of CGRP by approximately 50% each. Pretreatment of the animals with both phentolamine and the vasopressin antagonist completely abolished the central inhibitory effect of CGRP. Peripheral vasopressin and NE significantly decreased duodenal bicarbonate secretion, and their inhibitory effects were additive and prevented by phentolamine and the vasopressin antagonist, respectively. We conclude that cerebroventricular CGRP inhibits rat duodenal bicarbonate secretion by activation of sympathetic efferents and subsequent release of NE and vasopressin that act on alpha adrenergic and vasopressin receptors, respectively.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 25
page 25
icon of scanned page 26
page 26
icon of scanned page 27
page 27
icon of scanned page 28
page 28
icon of scanned page 29
page 29
icon of scanned page 30
page 30
icon of scanned page 31
page 31
icon of scanned page 32
page 32
Version history
  • Version 1 (January 1, 1990): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts