Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Cerebroventricular calcitonin gene-related peptide inhibits rat duodenal bicarbonate secretion by release of norepinephrine and vasopressin.
H J Lenz, M R Brown
H J Lenz, M R Brown
Published January 1, 1990
Citation Information: J Clin Invest. 1990;85(1):25-32. https://doi.org/10.1172/JCI114420.
View: Text | PDF
Research Article

Cerebroventricular calcitonin gene-related peptide inhibits rat duodenal bicarbonate secretion by release of norepinephrine and vasopressin.

  • Text
  • PDF
Abstract

Proximal duodenal bicarbonate secretion is an important factor in humans and animals protecting the mucosa against acid-peptic damage. This study examined the mechanisms responsible for the central nervous system regulation of duodenal bicarbonate secretion by calcitonin gene-related peptide (CGRP) in unrestrained rats. Cerebroventricular administration of rat CGRP significantly inhibited basal duodenal bicarbonate secretion as well as the stimulatory effects of vasoactive intestinal peptide, neurotensin, a luminal PGE1 analogue, misoprostol, and hydrochloric acid. The inhibitory effects of cerebroventricular CGRP were abolished by ganglionic blockade with chlorisondamine, significantly attenuated by noradrenergic blockade with bretylium, and enhanced by vagotomy. Inhibition of duodenal bicarbonate secretion induced by CGRP coincided with significant increases in plasma norepinephrine (NE) and vasopressin concentrations. The alpha adrenergic receptor antagonist, phentolamine, and the vasopressin V1 receptor antagonist, (1-deaminopenicillamine, 2-[O-methyl]Tyr, 8-Arg)-vasopressin, given intravenously reversed the central inhibitory effect of CGRP by approximately 50% each. Pretreatment of the animals with both phentolamine and the vasopressin antagonist completely abolished the central inhibitory effect of CGRP. Peripheral vasopressin and NE significantly decreased duodenal bicarbonate secretion, and their inhibitory effects were additive and prevented by phentolamine and the vasopressin antagonist, respectively. We conclude that cerebroventricular CGRP inhibits rat duodenal bicarbonate secretion by activation of sympathetic efferents and subsequent release of NE and vasopressin that act on alpha adrenergic and vasopressin receptors, respectively.

Authors

H J Lenz, M R Brown

×

Full Text PDF

Download PDF (1.60 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts