Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114301

At physiologic albumin/oleate concentrations oleate uptake by isolated hepatocytes, cardiac myocytes, and adipocytes is a saturable function of the unbound oleate concentration. Uptake kinetics are consistent with the conventional theory.

D Sorrentino, R B Robinson, C L Kiang, and P D Berk

Polly Annenberg Levee Hematology Center, New York, New York.

Find articles by Sorrentino, D. in: JCI | PubMed | Google Scholar

Polly Annenberg Levee Hematology Center, New York, New York.

Find articles by Robinson, R. in: JCI | PubMed | Google Scholar

Polly Annenberg Levee Hematology Center, New York, New York.

Find articles by Kiang, C. in: JCI | PubMed | Google Scholar

Polly Annenberg Levee Hematology Center, New York, New York.

Find articles by Berk, P. in: JCI | PubMed | Google Scholar

Published October 1, 1989 - More info

Published in Volume 84, Issue 4 on October 1, 1989
J Clin Invest. 1989;84(4):1325–1333. https://doi.org/10.1172/JCI114301.
© 1989 The American Society for Clinical Investigation
Published October 1, 1989 - Version history
View PDF
Abstract

To reexamine the role of albumin in cellular uptake of long chain fatty acids, we measured [3H]oleate uptake by isolated hepatocytes, adipocytes, and cardiac myocytes from incubations containing oleate/albumin complexes at molar ratios from 0.01:1 to 2:1. For each ratio the uptake was studied over a wide range of albumin concentrations. In all three cell types and at any given oleate/albumin ratio, the uptake appeared saturable with increasing concentrations of oleate:albumin complexes despite the fact that the unbound oleate concentration for each molar ratio is essentially constant. However, the "Km" but not the "Vmax" of these pseudosaturation curves was influenced by substrate availability. At low albumin concentrations, uptake velocities did not correlate with unbound oleate concentrations. However, observed and expected uptake velocities coincided at albumin concentrations approaching physiologic levels and were a saturable function of the oleate/albumin ratios and the consequent unbound oleate concentrations employed. Hence, under the experimental conditions employed in this study using a variety of suspended cell types, oleate uptake kinetics were consistent with the conventional theory at physiologic concentrations of albumin.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1325
page 1325
icon of scanned page 1326
page 1326
icon of scanned page 1327
page 1327
icon of scanned page 1328
page 1328
icon of scanned page 1329
page 1329
icon of scanned page 1330
page 1330
icon of scanned page 1331
page 1331
icon of scanned page 1332
page 1332
icon of scanned page 1333
page 1333
Version history
  • Version 1 (October 1, 1989): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts