Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114243

Autonomous growth of a human neuroblastoma cell line is mediated by insulin-like growth factor II.

O M El-Badry, J A Romanus, L J Helman, M J Cooper, M M Rechler, and M A Israel

Molecular Genetics Section, National Cancer Institute, Bethesda, Maryland 20892.

Find articles by El-Badry, O. in: PubMed | Google Scholar

Molecular Genetics Section, National Cancer Institute, Bethesda, Maryland 20892.

Find articles by Romanus, J. in: PubMed | Google Scholar

Molecular Genetics Section, National Cancer Institute, Bethesda, Maryland 20892.

Find articles by Helman, L. in: PubMed | Google Scholar

Molecular Genetics Section, National Cancer Institute, Bethesda, Maryland 20892.

Find articles by Cooper, M. in: PubMed | Google Scholar

Molecular Genetics Section, National Cancer Institute, Bethesda, Maryland 20892.

Find articles by Rechler, M. in: PubMed | Google Scholar

Molecular Genetics Section, National Cancer Institute, Bethesda, Maryland 20892.

Find articles by Israel, M. in: PubMed | Google Scholar

Published September 1, 1989 - More info

Published in Volume 84, Issue 3 on September 1, 1989
J Clin Invest. 1989;84(3):829–839. https://doi.org/10.1172/JCI114243.
© 1989 The American Society for Clinical Investigation
Published September 1, 1989 - Version history
View PDF
Abstract

Insulin-like growth factor II (IGF-II) mRNA was increased in two of eight neuroblastomas and in eight of eight pheochromocytomas, tumors of the adrenal medulla that occur in childhood and adulthood, respectively. RNA encoding the type I IGF receptor, the receptor thought to mediate the mitogenic effects of IGF-I and IGF-II, also was uniformly expressed in these cells. To assess the role of IGF-II in the growth of these tumor cells, we have used the SK-N-AS cultured neuroblastoma cell line, which can be continuously propagated in mitogen-free medium, as a model system. Our results strongly suggest that IGF-II, synthesized by SK-N-AS cells and acting through type I IGF receptors, contributes to the autonomous growth of this tumor cell line. (a) SK-N-AS cells synthesized large amounts of IGF-II RNA and secreted greater than 50 ng/ml of IGF-II (as determined by specific radioimmuno- and radioreceptor assays). Little, if any, IGF-I RNA or immunoreactive IGF-I were detected. (b) SK-N-AS cells possess type I IGF receptors. (c) Exogenous IGF-I and IGF-II stimulated DNA synthesis in SK-N-AS cells, and this stimulation was abolished by a blocking antibody to the type I IGF receptor. (d) This anti-receptor antibody also abolished the multiplication of SK-N-AS cells in the absence of added mitogens. We conclude that IGF-II is an autocrine growth factor for SK-N-AS cells and suggest that this mechanism may contribute to the growth of some adrenal medullary tumors.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 829
page 829
icon of scanned page 830
page 830
icon of scanned page 831
page 831
icon of scanned page 832
page 832
icon of scanned page 833
page 833
icon of scanned page 834
page 834
icon of scanned page 835
page 835
icon of scanned page 836
page 836
icon of scanned page 837
page 837
icon of scanned page 838
page 838
icon of scanned page 839
page 839
Version history
  • Version 1 (September 1, 1989): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts