Abstract

The dynamic response of squared conduction velocity, theta 2, to repetitive stimulation in canine Purkinje fibers with quinidine was studied using a double-microelectrode technique. With stimulation, a frequency-dependent monoexponential increase in conduction delay (CD) and a decline in theta 2 were observed. The exponential rates and changes in steady-state CD and theta 2 were frequency- and concentration-dependent. The overall drug uptake rates describing blockade and the interpulse recovery interval were linearly related and steady-state values of theta 2 were linearly related to an exponential function of the stimulus intervals. Based on first-order binding, the frequency- and concentration-dependent properties of quinidine were characterized by the apparent binding and unbinding rates of 14.2 +/- 5.7 X 10(6) mol-1.s-1 and 63 +/- 12 s-1 for activated and 14.8 +/- 1.0 X 10(2) mol-1.s-1 and 0.16 +/- 0.03 s-1 for resting states. The recovery time constant extracted from the pulse train interpulse interval was 5.8 +/- 1.5 s compared with 5.1 +/- 0.6 s determined from a posttrain test pulse protocol. This study demonstrates that the kinetics of drug action can be derived from measures of impulse propagation. This provides a basis for characterizing frequency-dependent properties of antiarrhythmic agents in vivo and suggests the plausibility of a quantitative assessment of drug binding and recovery rates in man.

Authors

D L Packer, A O Grant, H C Strauss, C F Starmer

×

Other pages: