Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI112308

Use of biosynthetic human C-peptide in the measurement of insulin secretion rates in normal volunteers and type I diabetic patients.

K S Polonsky, J Licinio-Paixao, B D Given, W Pugh, P Rue, J Galloway, T Karrison, and B Frank

Find articles by Polonsky, K. in: PubMed | Google Scholar

Find articles by Licinio-Paixao, J. in: PubMed | Google Scholar

Find articles by Given, B. in: PubMed | Google Scholar

Find articles by Pugh, W. in: PubMed | Google Scholar

Find articles by Rue, P. in: PubMed | Google Scholar

Find articles by Galloway, J. in: PubMed | Google Scholar

Find articles by Karrison, T. in: PubMed | Google Scholar

Find articles by Frank, B. in: PubMed | Google Scholar

Published January 1, 1986 - More info

Published in Volume 77, Issue 1 on January 1, 1986
J Clin Invest. 1986;77(1):98–105. https://doi.org/10.1172/JCI112308.
© 1986 The American Society for Clinical Investigation
Published January 1, 1986 - Version history
View PDF
Abstract

We undertook this study to examine the accuracy of plasma C-peptide as a marker of insulin secretion. The peripheral kinetics of biosynthetic human C-peptide (BHCP) were studied in 10 normal volunteers and 7 insulin-dependent diabetic patients. Each subject received intravenous bolus injections of BHCP as well as constant and variable rate infusions. After intravenous bolus injections the metabolic clearance rate of BHCP (3.8 +/- 0.1 ml/kg per min, mean +/- SEM) was not significantly different from the value obtained during its constant intravenous infusion (3.9 +/- 0.1 ml/kg per min). The metabolic clearance rate of C-peptide measured during steady state intravenous infusions was constant over a wide concentration range. During experiments in which BHCP was infused at a variable rate, the peripheral concentration of C-peptide did not change in proportion to the infusion rate. Thus, the infusion rate of BHCP could not be calculated accurately as the product of the C-peptide concentration and metabolic clearance rate. However, the non-steady infusion rate of BHCP could be accurately calculated from peripheral C-peptide concentrations using a two-compartment mathematical model when model parameters were derived from the C-peptide decay curve in each subject. Application of this model to predict constant infusions of C-peptide from peripheral C-peptide concentrations resulted in model generated estimates of the C-peptide infusion rate that were 101.5 +/- 3.4% and 100.4 +/- 2.8% of low and high dose rates, respectively. Estimates of the total quantity of C-peptide infused at a variable rate over 240 min based on the two-compartment model represented 104.6 +/- 2.4% of the amount actually infused. Application of this approach to clinical studies will allow the secretion rate of insulin to be estimated with considerable accuracy. The insulin secretion rate in normal subjects after an overnight fast was 89.1 pmol/min, which corresponds with a basal 24-h secretion of 18.6 U.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 98
page 98
icon of scanned page 99
page 99
icon of scanned page 100
page 100
icon of scanned page 101
page 101
icon of scanned page 102
page 102
icon of scanned page 103
page 103
icon of scanned page 104
page 104
icon of scanned page 105
page 105
Version history
  • Version 1 (January 1, 1986): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts