Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Beta Adrenergic Receptors of Polymorphonuclear Particulates in Bronchial Asthma
Stanley P. Galant, … , Sandra Allred, Paul A. Insel
Stanley P. Galant, … , Sandra Allred, Paul A. Insel
Published March 1, 1980
Citation Information: J Clin Invest. 1980;65(3):577-585. https://doi.org/10.1172/JCI109702.
View: Text | PDF
Research Article

Beta Adrenergic Receptors of Polymorphonuclear Particulates in Bronchial Asthma

  • Text
  • PDF
Abstract

We have tested the beta adrenergic receptor theory of bronchial asthma by determining the number and affinity of binding sites of the beta adrenergic radioligand [3H]dihydroalprenolol (DHA) and the activity of adenylate cyclase in broken cell preparations of polymorphonuclear leukocytes (PMN). We studied 31 control subjects (group 1), 30 asthmatics receiving no systemic adrenergic medication (group 2), and 17 asthmatics receiving adrenergic agonists systemically (group 3). Control subjects and asthmatics taking no adrenergic drugs bound similar amounts of DHA at 0.5 nM and 30 nM DHA and had about 900 binding sites per PMN. In contrast, asthmatics receiving adrenergic agonists had a >70% decrease in their number of DHA binding sites per PMN (254±57). In a subset of our three groups of subjects (eight from group 1, six from group 2, and five from group 3) we measured DHA binding at several DHA concentrations and found similar values (0.4-0.7 nM) for the dissociation constant of DHA among these subjects.

Authors

Stanley P. Galant, Lakshmi Duriseti, Sharon Underwood, Sandra Allred, Paul A. Insel

×

Full Text PDF | Download (1.44 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts