Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI109679

Injury of neoplastic cells by murine macrophages leads to inhibition of mitochondrial respiration.

D L Granger, R R Taintor, J L Cook, and J B Hibbs Jr

Find articles by Granger, D. in: PubMed | Google Scholar

Find articles by Taintor, R. in: PubMed | Google Scholar

Find articles by Cook, J. in: PubMed | Google Scholar

Find articles by Hibbs, J. in: PubMed | Google Scholar

Published February 1, 1980 - More info

Published in Volume 65, Issue 2 on February 1, 1980
J Clin Invest. 1980;65(2):357–370. https://doi.org/10.1172/JCI109679.
© 1980 The American Society for Clinical Investigation
Published February 1, 1980 - Version history
View PDF
Abstract

Cytotoxic activated macrophages (CM) inhibited the growth of neoplastic L1210 cells in vitro but L1210 cell death was minimal to nonexistent. L1210 cells injured by CM were separated from macrophages and studied in an isolated system. CM-injured L1210 cells had an absolute requirement for glucose or another glycolyzable hexose (mannose or fructose) for at least 40 h after removal from macrophages. If the culture medium lacked sufficient concentration of one of these sugars, CM-injured L1210 cells died within 4 h. Uninjured L1210 cells cultured alone or with peptone-stimulated macrophages had no such requirement and maintained complete viability in hexoseless medium. The hexose requirement of CM-injured L1210 cells could not be fulfilled by other naturally occurring monosaccharides, glucose or mannose derivatives, or substrates that can be oxidized by mitochondria. The concentration requirements for glucose, mannose, and fructose by CM-injured L1210 cells correlated with the concentrations required to support maximal glycolysis of these sugars by other murine ascites cells. A concentration of 2-deoxy-D-glucose which completely inhibited L1210 cell glycolysis also complete prevented the ability of glucose or mannose to maintain viability of CM-injured L1210 cells. Interaction with CM led to inhibition of L1210 cell mitochondrial oxidative phosphorylation. This was supported by the findings that: (a) CM-injured L1210 cells had no Pasteur effect; their rate of aerobic glycolysis was the same as the rate of anaerobic glycolysis of uninjured L1210 cells, (b) Endogenous respiration of CM-injured L1210 cells was 15% of normal. Maximal inhibition of uninjured L1210 cell respiration by a specific mitochondrial poison (oligomycin) was nearly the same (13% of normal). It followed that CM-injured L1210 cells required hexose for chemical energy production via the glycolytic pathway. CM-induced mitochondrial injury occurred in five other neoplastic cell lines tested.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 357
page 357
icon of scanned page 358
page 358
icon of scanned page 359
page 359
icon of scanned page 360
page 360
icon of scanned page 361
page 361
icon of scanned page 362
page 362
icon of scanned page 363
page 363
icon of scanned page 364
page 364
icon of scanned page 365
page 365
icon of scanned page 366
page 366
icon of scanned page 367
page 367
icon of scanned page 368
page 368
icon of scanned page 369
page 369
icon of scanned page 370
page 370
Version history
  • Version 1 (February 1, 1980): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts