Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Videos

Stephen O’Rahilly

Professor Stephen O’Rahilly’s research has led to an increased understanding of the genetic causes of human obesity and insulin resistance. Using modern biochemical approaches and classical clinical observation in humans with profound metabolic disorders, O’Rahilly, from the Departments of Medicine and Clinical Biochemistry at the University of Cambridge, has shown that a person’s appetite and feeding behavior can be linked to specific genes. His work has challenged long-held dogmas and led to new treatment avenues. The full interview includes many more stories about how you can learn more from reading Chekhov than medical school and why he has stayed in Cambridge all these years.


Bruce Spiegelman

More than almost any other scientist in the field of obesity and metabolism research, the work of Bruce Spiegelman, from the Dana-Farber Cancer Institute and Harvard Medical School, has informed potential targets for drug discovery that could burn fat and even turn fat into muscle. He was the first to suggest that inflammation underscores insulin resistance, and also the first to find the key regulator of adipogenesis, PPAR-γ.


Reducing TMPRSS6 ameliorates hemochromatosis and beta-thalassemia in mice

Brett Monia and Stefano Rivella discuss how reduction of TMPRSS6 expression with antisense oligonucleotides ameliorates iron metabolism disorders in mice. Highlights:

  • Iron metabolism is a complex and heavily regulated process that is required for basic physiological functions, including hematopoiesis and host immune responses.
  • Hemochromatosis and β-thalassemia are iron overload disorders caused by low levels of hepcidin, the hormone that regulates iron absorption.
  • Antisense oligonucleotides (ASOs) lowered Tmprss6 RNA and elevated hepcidin levels.
  • TMPRSS6 ASO treatment reversed anemia and iron overload in a mouse model of β-thalassemia.

The TGR5 receptor mediates bile acid-induced itch and analgesia

The liver secretes bile acids to aid in the digestion of fats. Cholestasis is a condition in which the bile flow from the liver to the duodenum is impeded. Patients with the disease exhibit itchiness (pruritis) and cannot sense pain (analgesia). The molecular mechanisms mediating these effects are unknown. Carlos Corvera of UCSF and Nigel Bunnett of Monash University discuss their study demonstrating that bile acids cause itch and analgesia by activating the TGR5 receptor in neurons. Highlights:

  • TGR5 is expressed in neurons in mouse dorsal root ganglia and spinal cord, which transmit itch and pain signals.
  • Stimulation of TGR5 induced the release of itch and analgesia transmitting molecules, including gastrin-releasing peptide and leucine-enkephalin.
  • Intradermal injection of bile acids stimulated scratching behavior that was TGR5-dependent.
  • Bile acids activate TGR5 on sensory nerves to transmit itch and analgesia, suggesting that these mechanisms contribute to pruritus and analgesia during cholestatic liver diseases.

Increased brain uptake and oxidation of acetate in heavy drinkers

Increased brain uptake and oxidation of acetate in heavy drinkers Graeme Mason of Yale University discusses how heavy drinking influences metabolism and leads to alternate fuel use in the brain. Highlights:

  • Brain acetate consumption is inducible by conditions that can occur with heavy alcohol use.
  • Heavy drinking is associated with enhanced ability to import and oxidize acetate.
  • Systemic acetate provides a potential metabolic reward for drinking, possibly specific to glia.
  • Acetate oxidation provides a mechanism to generate adenosine, whose loss may contribute to withdrawal symptoms.

Spanish and Portuguese versions are also available.

  • ← Previous
  • 1
  • 2
  • …
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • Next →
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts