Vaccine strategies that utilize human DCs to enhance antitumor immunity have yet to realize their full potential. Approaches that optimally target a spectrum of antigens to DCs are urgently needed. Here we report the development of a platform for loading DCs with antigen. It is based on killed but metabolically active (KBMA) recombinant Listeria monocytogenes and facilitates both antigen delivery and maturation of human DCs. Highly attenuated KBMA L. monocytogenes were engineered to express an epitope of the melanoma-associated antigen MelanA/Mart-1 that is recognized by human CD8+ T cells when presented by the MHC class I molecule HLA-A*0201. The engineered KBMA L. monocytogenes induced human DC upregulation of costimulatory molecules and secretion of pro-Th1 cytokines and type I interferons, leading to effective priming of Mart-1–specific human CD8+ T cells and lysis of patient-derived melanoma cells. KBMA L. monocytogenes expressing full-length NY-ESO-1 protein, another melanoma-associated antigen, delivered the antigen for presentation by MHC class I and class II molecules independent of the MHC haplotype of the DC donor. A mouse therapeutic tumor model was used to show that KBMA L. monocytogenes efficiently targeted APCs in vivo to induce protective antitumor responses. Together, our data demonstrate that KBMA L. monocytogenes may be a powerful platform that can both deliver recombinant antigen to DCs for presentation and provide a potent DC-maturation stimulus, making it a potential cancer vaccine candidate.
Mojca Skoberne, Alice Yewdall, Keith S. Bahjat, Emmanuelle Godefroy, Peter Lauer, Edward Lemmens, Weiqun Liu, Will Luckett, Meredith Leong, Thomas W. Dubensky, Dirk G. Brockstedt, Nina Bhardwaj
Food intake is regulated by a network of signals that emanate from the gut and the brainstem. The peripheral satiety signal cholecystokinin is released from the gut following food intake and acts on fibers of the vagus nerve, which project to the brainstem and activate neurons that modulate both gastrointestinal function and appetite. In this study, we found that neurons in the nucleus tractus solitarii of the brainstem that express prolactin-releasing peptide (PrRP) are activated rapidly by food ingestion. To further examine the role of this peptide in the control of food intake and energy metabolism, we generated PrRP-deficient mice and found that they displayed late-onset obesity and adiposity, phenotypes that reflected an increase in meal size, hyperphagia, and attenuated responses to the anorexigenic signals cholecystokinin and leptin. Hypothalamic expression of 6 other appetite-regulating peptides remained unchanged in the PrRP-deficient mice. Blockade of endogenous PrRP signaling in WT rats by central injection of PrRP-specific mAb resulted in an increase in food intake, as reflected by an increase in meal size. These data suggest that PrRP relays satiety signals within the brain and that selective disturbance of this system can result in obesity and associated metabolic disorders.
Yuki Takayanagi, Hirokazu Matsumoto, Masanori Nakata, Takashi Mera, Shoji Fukusumi, Shuji Hinuma, Yoichi Ueta, Toshihiko Yada, Gareth Leng, Tatsushi Onaka
The response of cardiomyocytes to biomechanical stress can determine the pathophysiology of hypertrophic cardiac disease, and targeting the pathways regulating these responses is a therapeutic goal. However, little is known about how biomechanical stress is sensed by the cardiomyocyte sarcomere to transduce intracellular hypertrophic signals or how the dysfunction of these pathways may lead to disease. Here, we found that four-and-a-half LIM domains 1 (FHL1) is part of a complex within the cardiomyocyte sarcomere that senses the biomechanical stress–induced responses important for cardiac hypertrophy. Mice lacking Fhl1 displayed a blunted hypertrophic response and a beneficial functional response to pressure overload induced by transverse aortic constriction. A link to the Gαq (Gq) signaling pathway was also observed, as Fhl1 deficiency prevented the cardiomyopathy observed in Gq transgenic mice. Mechanistic studies demonstrated that FHL1 plays an important role in the mechanism of pathological hypertrophy by sensing biomechanical stress responses via the N2B stretch sensor domain of titin and initiating changes in the titin- and MAPK-mediated responses important for sarcomere extensibility and intracellular signaling. These studies shed light on the physiological regulation of the sarcomere in response to hypertrophic stress.
Farah Sheikh, Anna Raskin, Pao-Hsien Chu, Stephan Lange, Andrea A. Domenighetti, Ming Zheng, Xingqun Liang, Tong Zhang, Toshitaka Yajima, Yusu Gu, Nancy D. Dalton, Sushil K. Mahata, Gerald W. Dorn II, Joan Heller-Brown, Kirk L. Peterson, Jeffrey H. Omens, Andrew D. McCulloch, Ju Chen
ASK1-interacting protein-1 (AIP1), a recently identified member of the Ras GTPase-activating protein family, is highly expressed in vascular ECs and regulates EC apoptosis in vitro. However, its function in vivo has not been established. To study this, we generated AIP1-deficient mice (KO mice). Although these mice showed no obvious defects in vascular development, they exhibited dramatically enhanced angiogenesis in 2 models of inflammatory angiogenesis. In one of these models, the enhanced angiogenesis observed in the KO mice was associated with increased VEGF-VEGFR2 signaling. Consistent with this, VEGF-induced ear, cornea, and retina neovascularization were greatly augmented in KO mice and the enhanced retinal angiogenesis was markedly diminished by overexpression of AIP1. In vitro, VEGF-induced EC migration was inhibited by AIP1 overexpression, whereas it was augmented by both AIP1 knockout and knockdown, with the enhanced EC migration caused by AIP1 knockdown being associated with increased VEGFR2 signaling. We present mechanistic data that suggest AIP1 is recruited to the VEGFR2-PI3K complex, binding to both VEGFR2 and PI3K p85, at a late phase of the VEGF response, and that this leads to inhibition of VEGFR2 signaling. Taken together, our data demonstrate that AIP1 functions as an endogenous inhibitor in VEGFR2-mediated adaptive angiogenesis in mice.
Haifeng Zhang, Yun He, Shengchuan Dai, Zhe Xu, Yan Luo, Ting Wan, Dianhong Luo, Dennis Jones, Shibo Tang, Hong Chen, William C. Sessa, Wang Min
B-RAF is frequently mutated in solid tumors, resulting in activation of the MEK/ERK signaling pathway and ultimately tumor cell growth and survival. MEK inhibition in these cells results in cell cycle arrest and cytostasis. Here, we have shown that MEK inhibition also triggers limited apoptosis of human tumor cell lines with B-RAF mutations and that this effect was dependent on upregulation and dephosphorylation of the proapoptotic, Bcl-2 homology 3–only (BH3-only) Bcl-2 family member Bim. However, upregulation of Bim was insufficient for extensive apoptosis and was countered by overexpression of Bcl-2. To overcome apoptotic resistance, we treated the B-RAF mutant cells both with MEK inhibitors and with the BH3 mimetic ABT-737, resulting in profound synergism and extensive tumor cell death. This treatment was successful because of both efficient antagonism of the prosurvival Bcl-2 family member Mcl-1 by Bim and inhibition of Bcl-2 and Bcl-xL by ABT-737. Critically, addition of ABT-737 converted the predominantly cytostatic effect of MEK inhibition to a cytotoxic effect, causing long-term tumor regression in mice xenografted with human tumor cell lines. Thus, the therapeutic efficacy of MEK inhibition requires concurrent unleashing of apoptosis by a BH3 mimetic and represents a potent combination treatment for tumors harboring B-RAF mutations.
Mark S. Cragg, Elisa S. Jansen, Michele Cook, Claire Harris, Andreas Strasser, Clare L. Scott
Hyperproliferation of bile duct epithelial cells due to cell-cycle dysregulation is a key feature of cystogenesis in polycystic liver diseases (PCLDs). Recent evidence suggests a regulatory role for microRNAs (miRNAs) in a variety of biological processes, including cell proliferation. We therefore hypothesized that miRNAs may be involved in the regulation of selected components of the cell cycle and might contribute to hepatic cystogenesis. We found that the cholangiocyte cell line PCK-CCL, which is derived from the PCK rat, a model of autosomal recessive polycystic kidney disease (ARPKD), displayed global changes in miRNA expression compared with normal rat cholangiocytes (NRCs). More specific analysis revealed decreased levels of 1 miRNA, miR15a, both in PCK-CCL cells and in liver tissue from PCK rats and patients with a PCLD. The decrease in miR15a expression was associated with upregulation of its target, the cell-cycle regulator cell division cycle 25A (Cdc25A). Overexpression of miR15a in PCK-CCL cells decreased Cdc25A levels, inhibited cell proliferation, and reduced cyst growth. In contrast, suppression of miR15a in NRCs accelerated cell proliferation, increased Cdc25A expression, and promoted cyst growth. Taken together, these results suggest that suppression of miR15a contributes to hepatic cystogenesis through dysregulation of Cdc25A.
Seung-Ok Lee, Tatyana Masyuk, Patrick Splinter, Jesús M. Banales, Anatoliy Masyuk, Angela Stroope, Nicholas LaRusso
FcγRIV is a recently identified mouse activating receptor for IgG2a and IgG2b that is expressed on monocytes, macrophages, and neutrophils; herein it is referred to as mFcγRIV. Although little is known about mFcγRIV, it has been proposed to be the mouse homolog of human FcγRIIIA (hFcγRIIIA) because of high sequence homology. Our work, however, has revealed what we believe to be new properties of mFcγRIV that endow this receptor with a previously unsuspected biological significance; we have shown that it is a low-affinity IgE receptor for all IgE allotypes. Although mFcγRIV functioned as a high-affinity IgG receptor, mFcγRIV-bound monomeric IgGs were readily displaced by IgE immune complexes. Engagement of mFcγRIV by IgE immune complexes induced bronchoalveolar and peritoneal macrophages to secrete cytokines, suggesting that mFcγRIV may be an equivalent of human FceRI(αγ), which is expressed by macrophages and neutrophils and especially in atopic individuals, rather than an equivalent of hFcγRIIIA, which has no affinity for IgE. Using mice lacking 3 FcγRs and 2 FceRs and expressing mFcγRIV only, we further demonstrated that mFcγRIV promotes IgE-induced lung inflammation. These data lead us to propose a mouse model of IgE-induced lung inflammation in which cooperation exists between mast cells and mFcγRIV-expressing lung cells. We therefore suggest that a similar cooperation may occur between mast cells and hFceRI-expressing lung cells in human allergic asthma.
David A. Mancardi, Bruno Iannascoli, Sylviane Hoos, Patrick England, Marc Daëron, Pierre Bruhns
Mucin-type O-glycans (O-glycans) are highly expressed in vascular ECs. However, it is not known whether they are important for vascular development. To investigate the roles of EC O-glycans, we generated mice lacking T-synthase, a glycosyltransferase encoded by the gene C1galt1 that is critical for the biosynthesis of core 1–derived O-glycans, in ECs and hematopoietic cells (termed here EHC T-syn–/– mice). EHC T-syn–/– mice exhibited embryonic and neonatal lethality associated with disorganized and blood-filled lymphatic vessels. Bone marrow transplantation and EC C1galt1 transgene rescue demonstrated that lymphangiogenesis specifically requires EC O-glycans, and intestinal lymphatic microvessels in EHC T-syn–/– mice expressed a mosaic of blood and lymphatic EC markers. The level of O-glycoprotein podoplanin was significantly reduced in EHC T-syn–/– lymphatics, and podoplanin-deficient mice developed blood-filled lymphatics resembling EHC T-syn–/– defects. In addition, postnatal inactivation of C1galt1 caused blood/lymphatic vessel misconnections that were similar to the vascular defects in the EHC T-syn–/– mice. One consequence of eliminating T-synthase in ECs and hematopoietic cells was that the EHC T-syn–/– pups developed fatty liver disease, because of direct chylomicron deposition via misconnected portal vein and intestinal lymphatic systems. Our studies therefore demonstrate that EC O-glycans control the separation of blood and lymphatic vessels during embryonic and postnatal development, in part by regulating podoplanin expression.
Jianxin Fu, Holger Gerhardt, J. Michael McDaniel, Baoyun Xia, Xiaowei Liu, Lacramioara Ivanciu, Annelii Ny, Karlien Hermans, Robert Silasi-Mansat, Samuel McGee, Emma Nye, Tongzhong Ju, Maria I. Ramirez, Peter Carmeliet, Richard D. Cummings, Florea Lupu, Lijun Xia
Mucosal diseases are often characterized by an inflammatory infiltrate that includes polymorphonuclear leukocytes (PMNs), monocytes, lymphocytes, and platelets. A number of studies have suggested that the interaction of platelets with leukocytes has an essential proinflammatory role. Here, we examined whether platelets migrate across mucosal epithelium, as PMNs are known to do, and whether platelets influence epithelial cell function. Initial studies revealed that human platelets did not efficiently transmigrate across human epithelial cell monolayers. However, in the presence of human PMNs, platelet movement across the epithelium was proportional to the extent of PMN transmigration, and strategies that blocked PMN transmigration diminished platelet movement. Furthermore, platelet-PMN comigration was observed in intestinal tissue derived from human patients with inflammatory bowel disease (IBD). The translocated platelets were found to release large quantities of ATP, which was metabolized to adenosine via a 2-step enzymatic reaction mediated by ecto-nucleotidases, including CD73 and ecto–nucleoside triphosphate diphosphohydrolases (ecto-NTPDases), expressed on the apical membrane of the intestinal epithelial cells. In vitro studies and a mouse model of intestinal inflammation were employed to define a mechanism involving adenosine-mediated induction of electrogenic chloride secretion, with concomitant water movement into the intestinal lumen. These studies demonstrate that ecto-NTPDases are expressed on the apical membrane of epithelial cells and are involved in what we believe to be a previously unappreciated function for platelets in the inflamed intestine, which might promote bacterial clearance under inflammatory conditions.
Thomas Weissmüller, Eric L. Campbell, Peter Rosenberger, Melanie Scully, Paul L. Beck, Glenn T. Furuta, Sean P. Colgan
Egg activation, which is the first step in the initiation of embryo development, involves both completion of meiosis and progression into mitotic cycles. In mammals, the fertilizing sperm delivers the activating signal, which consists of oscillations in free cytosolic Ca2+ concentration ([Ca2+]i). Intracytoplasmic sperm injection (ICSI) is a technique that in vitro fertilization clinics use to treat a myriad of male factor infertility cases. Importantly, some patients who repeatedly fail ICSI also fail to induce egg activation and are, therefore, sterile. Here, we have found that sperm from patients who repeatedly failed ICSI were unable to induce [Ca2+]i oscillations in mouse eggs. We have also shown that PLC, zeta 1 (PLCZ1), the sperm protein thought to induce [Ca2+]i oscillations, was localized to the equatorial region of wild-type sperm heads but was undetectable in sperm from patients who had failed ICSI. The absence of PLCZ1 in these patients was further confirmed by Western blot, although genomic sequencing failed to reveal conclusive PLCZ1 mutations. Using mouse eggs, we reproduced the failure of sperm from these patients to induce egg activation and rescued it by injection of mouse Plcz1 mRNA. Together, our results indicate that the inability of human sperm to initiate [Ca2+]i oscillations leads to failure of egg activation and sterility and that abnormal PLCZ1 expression underlies this functional defect.
Sook-Young Yoon, Teru Jellerette, Ana Maria Salicioni, Hoi Chang Lee, Myung-sik Yoo, Kevin Coward, John Parrington, Daniel Grow, Jose B. Cibelli, Pablo E. Visconti, Jesse Mager, Rafael A. Fissore
No posts were found with this tag.