Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
MicroRNA15a modulates expression of the cell-cycle regulator Cdc25A and affects hepatic cystogenesis in a rat model of polycystic kidney disease
Seung-Ok Lee, … , Angela Stroope, Nicholas LaRusso
Seung-Ok Lee, … , Angela Stroope, Nicholas LaRusso
Published October 23, 2008
Citation Information: J Clin Invest. 2008;118(11):3714-3724. https://doi.org/10.1172/JCI34922.
View: Text | PDF
Research Article

MicroRNA15a modulates expression of the cell-cycle regulator Cdc25A and affects hepatic cystogenesis in a rat model of polycystic kidney disease

  • Text
  • PDF
Abstract

Hyperproliferation of bile duct epithelial cells due to cell-cycle dysregulation is a key feature of cystogenesis in polycystic liver diseases (PCLDs). Recent evidence suggests a regulatory role for microRNAs (miRNAs) in a variety of biological processes, including cell proliferation. We therefore hypothesized that miRNAs may be involved in the regulation of selected components of the cell cycle and might contribute to hepatic cystogenesis. We found that the cholangiocyte cell line PCK-CCL, which is derived from the PCK rat, a model of autosomal recessive polycystic kidney disease (ARPKD), displayed global changes in miRNA expression compared with normal rat cholangiocytes (NRCs). More specific analysis revealed decreased levels of 1 miRNA, miR15a, both in PCK-CCL cells and in liver tissue from PCK rats and patients with a PCLD. The decrease in miR15a expression was associated with upregulation of its target, the cell-cycle regulator cell division cycle 25A (Cdc25A). Overexpression of miR15a in PCK-CCL cells decreased Cdc25A levels, inhibited cell proliferation, and reduced cyst growth. In contrast, suppression of miR15a in NRCs accelerated cell proliferation, increased Cdc25A expression, and promoted cyst growth. Taken together, these results suggest that suppression of miR15a contributes to hepatic cystogenesis through dysregulation of Cdc25A.

Authors

Seung-Ok Lee, Tatyana Masyuk, Patrick Splinter, Jesús M. Banales, Anatoliy Masyuk, Angela Stroope, Nicholas LaRusso

×

Figure 1

Rates of cell proliferation and mitotic indices in NRCs and PCK-CCL.

Options: View larger image (or click on image) Download as PowerPoint
Rates of cell proliferation and mitotic indices in NRCs and PCK-CCL.
(A)...
(A) In PCK-CCL, the rate of cell proliferation (determined by MTS absorbance at 490 nm) was significantly higher at each time point. Data are representative of 5 independent experiments. (B) Mitotic figures (asterisks) in NRCs and PCK-CCL were assessed by immunofluorescent confocal microscopy using an anti–α-tubulin antibody as a marker for microtubules (red). Nuclei were stained with DAPI (blue). Original magnification, ×60. (C) Quantitative analysis shows that in PCK-CCL, the number of mitotic cells (>500 cells counted in each experiment) was significantly greater compared with NRCs. *P < 0.05.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts