Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Research Article

  • 25,754 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 452
  • 453
  • 454
  • …
  • 2575
  • 2576
  • Next →
Inflammatory dendritic cells migrate in and out of transplanted chronic mycobacterial granulomas in mice
Heidi A. Schreiber, Jeffrey S. Harding, Oliver Hunt, Christopher J. Altamirano, Paul D. Hulseberg, Danielle Stewart, Zsuzsanna Fabry, Matyas Sandor
Heidi A. Schreiber, Jeffrey S. Harding, Oliver Hunt, Christopher J. Altamirano, Paul D. Hulseberg, Danielle Stewart, Zsuzsanna Fabry, Matyas Sandor
View: Text | PDF

Inflammatory dendritic cells migrate in and out of transplanted chronic mycobacterial granulomas in mice

  • Text
  • PDF
Abstract

An estimated one-third of the world’s population is infected with Mycobacterium tuberculosis, although most affected individuals maintain a latent infection. This control is attributed to the formation of granulomas, cell masses largely comprising infected macrophages with T cells aggregated around them. Inflammatory DCs, characterized as CD11c+CD11b+Ly6C+, are also found in granulomas and are an essential component of the acute immune response to mycobacteria. However, their function during chronic infection is less well understood. Here, we report that CD11c+ cells dynamically traffic in and out of both acute and chronic granulomas induced by Mycobacterium bovis strain bacillus Calmette-Guérin (BCG) in mice. By transplanting Mycobacterium-induced granulomas containing fluorescently labeled CD11c+ cells and bacteria into unlabeled mice, we were able to follow CD11c+ cell trafficking and T cell activation. We found that half of the CD11c+ cells in chronic granulomas were exchanged within 1 week. Compared with tissue-resident DC populations, CD11c+ cells migrating out of granuloma-containing tissue had an unexpected systemic dissemination pattern. Despite low antigen availability, systemic CD4+ T cell priming still occurred during chronic infection. These data demonstrate that surveillance of granulomatous tissue by CD11c+ cells is continuous and that these cells are distinct from tissue-resident DC populations and support T cell priming during both stages of Mycobacterium infection. This intense DC surveillance may also be a feature of Mycobacterium tuberculosis infection and other granuloma-associated diseases.

Authors

Heidi A. Schreiber, Jeffrey S. Harding, Oliver Hunt, Christopher J. Altamirano, Paul D. Hulseberg, Danielle Stewart, Zsuzsanna Fabry, Matyas Sandor

×

Dysfunction of fibroblasts of extrarenal origin underlies renal fibrosis and renal anemia in mice
Nariaki Asada, Masayuki Takase, Jin Nakamura, Akiko Oguchi, Misako Asada, Norio Suzuki, Ken-ichi Yamamura, Narihito Nagoshi, Shinsuke Shibata, Tata Nageswara Rao, Hans Joerg Fehling, Atsushi Fukatsu, Naoko Minegishi, Toru Kita, Takeshi Kimura, Hideyuki Okano, Masayuki Yamamoto, Motoko Yanagita
Nariaki Asada, Masayuki Takase, Jin Nakamura, Akiko Oguchi, Misako Asada, Norio Suzuki, Ken-ichi Yamamura, Narihito Nagoshi, Shinsuke Shibata, Tata Nageswara Rao, Hans Joerg Fehling, Atsushi Fukatsu, Naoko Minegishi, Toru Kita, Takeshi Kimura, Hideyuki Okano, Masayuki Yamamoto, Motoko Yanagita
View: Text | PDF

Dysfunction of fibroblasts of extrarenal origin underlies renal fibrosis and renal anemia in mice

  • Text
  • PDF
Abstract

In chronic kidney disease, fibroblast dysfunction causes renal fibrosis and renal anemia. Renal fibrosis is mediated by the accumulation of myofibroblasts, whereas renal anemia is mediated by the reduced production of fibroblast-derived erythropoietin, a hormone that stimulates erythropoiesis. Despite their importance in chronic kidney disease, the origin and regulatory mechanism of fibroblasts remain unclear. Here, we have demonstrated that the majority of erythropoietin-producing fibroblasts in the healthy kidney originate from myelin protein zero–Cre (P0-Cre) lineage-labeled extrarenal cells, which enter the embryonic kidney at E13.5. In the diseased kidney, P0-Cre lineage-labeled fibroblasts, but not fibroblasts derived from injured tubular epithelial cells through epithelial-mesenchymal transition, transdifferentiated into myofibroblasts and predominantly contributed to fibrosis, with concomitant loss of erythropoietin production. We further demonstrated that attenuated erythropoietin production in transdifferentiated myofibroblasts was restored by the administration of neuroprotective agents, such as dexamethasone and neurotrophins. Moreover, the in vivo administration of tamoxifen, a selective estrogen receptor modulator, restored attenuated erythropoietin production as well as fibrosis in a mouse model of kidney fibrosis. These findings reveal the pathophysiological roles of P0-Cre lineage-labeled fibroblasts in the kidney and clarify the link between renal fibrosis and renal anemia.

Authors

Nariaki Asada, Masayuki Takase, Jin Nakamura, Akiko Oguchi, Misako Asada, Norio Suzuki, Ken-ichi Yamamura, Narihito Nagoshi, Shinsuke Shibata, Tata Nageswara Rao, Hans Joerg Fehling, Atsushi Fukatsu, Naoko Minegishi, Toru Kita, Takeshi Kimura, Hideyuki Okano, Masayuki Yamamoto, Motoko Yanagita

×

TRAF6 is an amplified oncogene bridging the RAS and NF-κB pathways in human lung cancer
Daniel T. Starczynowski, William W. Lockwood, Sophie Deléhouzée, Raj Chari, Joanna Wegrzyn, Megan Fuller, Ming-Sound Tsao, Stephen Lam, Adi F. Gazdar, Wan L. Lam, Aly Karsan
Daniel T. Starczynowski, William W. Lockwood, Sophie Deléhouzée, Raj Chari, Joanna Wegrzyn, Megan Fuller, Ming-Sound Tsao, Stephen Lam, Adi F. Gazdar, Wan L. Lam, Aly Karsan
View: Text | PDF

TRAF6 is an amplified oncogene bridging the RAS and NF-κB pathways in human lung cancer

  • Text
  • PDF
Abstract

Somatic mutations and copy number alterations (as a result of deletion or amplification of large portions of a chromosome) are major drivers of human lung cancers. Detailed analysis of lung cancer–associated chromosomal amplifications could identify novel oncogenes. By performing an integrative cytogenetic and gene expression analysis of non–small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC) cell lines and tumors, we report here the identification of a frequently recurring amplification at chromosome 11 band p13. Within this region, only TNF receptor–associated factor 6 (TRAF6) exhibited concomitant mRNA overexpression and gene amplification in lung cancers. Inhibition of TRAF6 in human lung cancer cell lines suppressed NF-κB activation, anchorage-independent growth, and tumor formation. In these lung cancer cell lines, RAS required TRAF6 for its oncogenic capabilities. Furthermore, TRAF6 overexpression in NIH3T3 cells resulted in NF-κB activation, anchorage-independent growth, and tumor formation. Our findings show that TRAF6 is an oncogene that is important for RAS-mediated oncogenesis and provide a mechanistic explanation for the previously apparent importance of constitutive NF-κB activation in RAS-driven lung cancers.

Authors

Daniel T. Starczynowski, William W. Lockwood, Sophie Deléhouzée, Raj Chari, Joanna Wegrzyn, Megan Fuller, Ming-Sound Tsao, Stephen Lam, Adi F. Gazdar, Wan L. Lam, Aly Karsan

×

CD2AP in mouse and human podocytes controls a proteolytic program that regulates cytoskeletal structure and cellular survival
Suma Yaddanapudi, Mehmet M. Altintas, Andreas Kistler, Isabel Fernandez, Clemens C. Möller, Changli Wei, Vasil Peev, Jan B. Flesche, Anna-Lena Forst, Jing Li, Jaakko Patrakka, Zhijie Xiao, Florian Grahammer, Mario Schiffer, Tobias Lohmüller, Thomas Reinheckel, Changkyu Gu, Tobias B. Huber, Wenjun Ju, Markus Bitzer, Maria P. Rastaldi, Phillip Ruiz, Karl Tryggvason, Andrey Shaw, Christian Faul, Sanja Sever, Jochen Reiser
Suma Yaddanapudi, Mehmet M. Altintas, Andreas Kistler, Isabel Fernandez, Clemens C. Möller, Changli Wei, Vasil Peev, Jan B. Flesche, Anna-Lena Forst, Jing Li, Jaakko Patrakka, Zhijie Xiao, Florian Grahammer, Mario Schiffer, Tobias Lohmüller, Thomas Reinheckel, Changkyu Gu, Tobias B. Huber, Wenjun Ju, Markus Bitzer, Maria P. Rastaldi, Phillip Ruiz, Karl Tryggvason, Andrey Shaw, Christian Faul, Sanja Sever, Jochen Reiser
View: Text | PDF | Corrigendum

CD2AP in mouse and human podocytes controls a proteolytic program that regulates cytoskeletal structure and cellular survival

  • Text
  • PDF
Abstract

Kidney podocytes are highly differentiated epithelial cells that form interdigitating foot processes with bridging slit diaphragms (SDs) that regulate renal ultrafiltration. Podocyte injury results in proteinuric kidney disease, and genetic deletion of SD-associated CD2-associated protein (CD2AP) leads to progressive renal failure in mice and humans. Here, we have shown that CD2AP regulates the TGF-β1–dependent translocation of dendrin from the SD to the nucleus. Nuclear dendrin acted as a transcription factor to promote expression of cytosolic cathepsin L (CatL). CatL proteolyzed the regulatory GTPase dynamin and the actin-associated adapter synaptopodin, leading to a reorganization of the podocyte microfilament system and consequent proteinuria. CD2AP itself was proteolyzed by CatL, promoting sustained expression of the protease during podocyte injury, and in turn increasing the apoptotic susceptibility of podocytes to TGF-β1. Our study identifies CD2AP as the gatekeeper of the podocyte TGF-β response through its regulation of CatL expression and defines a molecular mechanism underlying proteinuric kidney disease.

Authors

Suma Yaddanapudi, Mehmet M. Altintas, Andreas Kistler, Isabel Fernandez, Clemens C. Möller, Changli Wei, Vasil Peev, Jan B. Flesche, Anna-Lena Forst, Jing Li, Jaakko Patrakka, Zhijie Xiao, Florian Grahammer, Mario Schiffer, Tobias Lohmüller, Thomas Reinheckel, Changkyu Gu, Tobias B. Huber, Wenjun Ju, Markus Bitzer, Maria P. Rastaldi, Phillip Ruiz, Karl Tryggvason, Andrey Shaw, Christian Faul, Sanja Sever, Jochen Reiser

×

Mice overexpressing BAFF develop a commensal flora–dependent, IgA-associated nephropathy
Douglas D. McCarthy, Julie Kujawa, Cheryl Wilson, Adrian Papandile, Urjana Poreci, Elisa A. Porfilio, Lesley Ward, Melissa A.E. Lawson, Andrew J. Macpherson, Kathy D. McCoy, York Pei, Lea Novak, Jeannette Y. Lee, Bruce A. Julian, Jan Novak, Ann Ranger, Jennifer L. Gommerman, Jeffrey L. Browning
Douglas D. McCarthy, Julie Kujawa, Cheryl Wilson, Adrian Papandile, Urjana Poreci, Elisa A. Porfilio, Lesley Ward, Melissa A.E. Lawson, Andrew J. Macpherson, Kathy D. McCoy, York Pei, Lea Novak, Jeannette Y. Lee, Bruce A. Julian, Jan Novak, Ann Ranger, Jennifer L. Gommerman, Jeffrey L. Browning
View: Text | PDF | Corrigendum

Mice overexpressing BAFF develop a commensal flora–dependent, IgA-associated nephropathy

  • Text
  • PDF
Abstract

B cell activation factor of the TNF family (BAFF) is a potent B cell survival factor. BAFF overexpressing transgenic mice (BAFF-Tg mice) exhibit features of autoimmune disease, including B cell hyperplasia and hypergammaglobulinemia, and develop fatal nephritis with age. However, basal serum IgA levels are also elevated, suggesting that the pathology in these mice may be more complex than initially appreciated. Consistent with this, we demonstrate here that BAFF-Tg mice have mesangial deposits of IgA along with high circulating levels of polymeric IgA that is aberrantly glycosylated. Renal disease in BAFF-Tg mice was associated with IgA, because serum IgA was highly elevated in nephritic mice and BAFF-Tg mice with genetic deletion of IgA exhibited less renal pathology. The presence of commensal flora was essential for the elevated serum IgA phenotype, and, unexpectedly, commensal bacteria–reactive IgA antibodies were found in the blood. These data illustrate how excess B cell survival signaling perturbs the normal balance with the microbiota, leading to a breach in the normal mucosal-peripheral compartmentalization. Such breaches may predispose the nonmucosal system to certain immune diseases. Indeed, we found that a subset of patients with IgA nephropathy had elevated serum levels of a proliferation inducing ligand (APRIL), a cytokine related to BAFF. These parallels between BAFF-Tg mice and human IgA nephropathy may provide a new framework to explore connections between mucosal environments and renal pathology.

Authors

Douglas D. McCarthy, Julie Kujawa, Cheryl Wilson, Adrian Papandile, Urjana Poreci, Elisa A. Porfilio, Lesley Ward, Melissa A.E. Lawson, Andrew J. Macpherson, Kathy D. McCoy, York Pei, Lea Novak, Jeannette Y. Lee, Bruce A. Julian, Jan Novak, Ann Ranger, Jennifer L. Gommerman, Jeffrey L. Browning

×

A sodium channel knockin mutant (NaV1.4-R669H) mouse model of hypokalemic periodic paralysis
Fenfen Wu, Wentao Mi, Dennis K. Burns, Yu Fu, Hillery F. Gray, Arie F. Struyk, Stephen C. Cannon
Fenfen Wu, Wentao Mi, Dennis K. Burns, Yu Fu, Hillery F. Gray, Arie F. Struyk, Stephen C. Cannon
View: Text | PDF

A sodium channel knockin mutant (NaV1.4-R669H) mouse model of hypokalemic periodic paralysis

  • Text
  • PDF
Abstract

Hypokalemic periodic paralysis (HypoPP) is an ion channelopathy of skeletal muscle characterized by attacks of muscle weakness associated with low serum K+. HypoPP results from a transient failure of muscle fiber excitability. Mutations in the genes encoding a calcium channel (CaV1.1) and a sodium channel (NaV1.4) have been identified in HypoPP families. Mutations of NaV1.4 give rise to a heterogeneous group of muscle disorders, with gain-of-function defects causing myotonia or hyperkalemic periodic paralysis. To address the question of specificity for the allele encoding the NaV1.4-R669H variant as a cause of HypoPP and to produce a model system in which to characterize functional defects of the mutant channel and susceptibility to paralysis, we generated knockin mice carrying the ortholog of the gene encoding the NaV1.4-R669H variant (referred to herein as R669H mice). Homozygous R669H mice had a robust HypoPP phenotype, with transient loss of muscle excitability and weakness in low-K+ challenge, insensitivity to high-K+ challenge, dominant inheritance, and absence of myotonia. Recovery was sensitive to the Na+/K+-ATPase pump inhibitor ouabain. Affected fibers had an anomalous inward current at hyperpolarized potentials, consistent with the proposal that a leaky gating pore in R669H channels triggers attacks, whereas a reduction in the amplitude of action potentials implies additional loss-of-function changes for the mutant NaV1.4 channels.

Authors

Fenfen Wu, Wentao Mi, Dennis K. Burns, Yu Fu, Hillery F. Gray, Arie F. Struyk, Stephen C. Cannon

×

Smad4 deficiency in T cells leads to the Th17-associated development of premalignant gastroduodenal lesions in mice
Jennifer Nancy Hahn, Vincent George Falck, Frank Robert Jirik
Jennifer Nancy Hahn, Vincent George Falck, Frank Robert Jirik
View: Text | PDF

Smad4 deficiency in T cells leads to the Th17-associated development of premalignant gastroduodenal lesions in mice

  • Text
  • PDF
Abstract

While there is evidence that specific T cell populations can promote the growth of established tumors, instances where T cell activity causes neoplasms to arise de novo are infrequent. Here, we employed two conditional mutagenesis systems to delete the TGF-β signaling pathway component Smad4 in T cells and observed the spontaneous development of massive polyps within the gastroduodenal regions of mice. The epithelial lesions contained increased levels of transcripts encoding IL-11, IL-6, TGF-β, IL-1β, and TNF-α, and lamina propria cells isolated from lesions contained abundant IL-17A+CD4+ T cells. Furthermore, we found that Smad4 deficiency attenuated TGF-β–mediated in vitro polarization of FoxP3+CD4+ T cells, but not IL-17A+CD4+ T cells, suggesting that the epithelial lesions may have arisen as a consequence of unchecked Th17 cell activity. Proinflammatory cytokine production likely accounted for the raised levels of IL-11, a cytokine known to promote gastric epithelial cell survival and hyperplasia. Consistent with IL-11 having a pathogenic role in this model, we found evidence of Stat3 activation in the gastric polyps. Thus, our data indicate that a chronic increase in gut Th17 cell activity can be associated with the development of premalignant lesions of the gastroduodenal region.

Authors

Jennifer Nancy Hahn, Vincent George Falck, Frank Robert Jirik

×

Cerebral amyloid-β proteostasis is regulated by the membrane transport protein ABCC1 in mice
Markus Krohn, Cathleen Lange, Jacqueline Hofrichter, Katja Scheffler, Jan Stenzel, Johannes Steffen, Toni Schumacher, Thomas Brüning, Anne-Sophie Plath, Franziska Alfen, Anke Schmidt, Felix Winter, Katja Rateitschak, Andreas Wree, Jörg Gsponer, Lary C. Walker, Jens Pahnke
Markus Krohn, Cathleen Lange, Jacqueline Hofrichter, Katja Scheffler, Jan Stenzel, Johannes Steffen, Toni Schumacher, Thomas Brüning, Anne-Sophie Plath, Franziska Alfen, Anke Schmidt, Felix Winter, Katja Rateitschak, Andreas Wree, Jörg Gsponer, Lary C. Walker, Jens Pahnke
View: Text | PDF

Cerebral amyloid-β proteostasis is regulated by the membrane transport protein ABCC1 in mice

  • Text
  • PDF
Abstract

In Alzheimer disease (AD), the intracerebral accumulation of amyloid-β (Aβ) peptides is a critical yet poorly understood process. Aβ clearance via the blood-brain barrier is reduced by approximately 30% in AD patients, but the underlying mechanisms remain elusive. ABC transporters have been implicated in the regulation of Aβ levels in the brain. Using a mouse model of AD in which the animals were further genetically modified to lack specific ABC transporters, here we have shown that the transporter ABCC1 has an important role in cerebral Aβ clearance and accumulation. Deficiency of ABCC1 substantially increased cerebral Aβ levels without altering the expression of most enzymes that would favor the production of Aβ from the Aβ precursor protein. In contrast, activation of ABCC1 using thiethylperazine (a drug approved by the FDA to relieve nausea and vomiting) markedly reduced Aβ load in a mouse model of AD expressing ABCC1 but not in such mice lacking ABCC1. Thus, by altering the temporal aggregation profile of Aβ, pharmacological activation of ABC transporters could impede the neurodegenerative cascade that culminates in the dementia of AD.

Authors

Markus Krohn, Cathleen Lange, Jacqueline Hofrichter, Katja Scheffler, Jan Stenzel, Johannes Steffen, Toni Schumacher, Thomas Brüning, Anne-Sophie Plath, Franziska Alfen, Anke Schmidt, Felix Winter, Katja Rateitschak, Andreas Wree, Jörg Gsponer, Lary C. Walker, Jens Pahnke

×

T cell killing by tolerogenic dendritic cells protects mice from allergy
Ulrike Luckey, Marcus Maurer, Talkea Schmidt, Nadine Lorenz, Beate Seebach, Martin Metz, Kerstin Steinbrink
Ulrike Luckey, Marcus Maurer, Talkea Schmidt, Nadine Lorenz, Beate Seebach, Martin Metz, Kerstin Steinbrink
View: Text | PDF

T cell killing by tolerogenic dendritic cells protects mice from allergy

  • Text
  • PDF
Abstract

It is well established that allergy development can be prevented by repeated low-dose exposure to contact allergens. Exactly which immune mechanisms are responsible for this so-called low zone tolerance (LZT) is not clear, although CD8+ suppressor T cells are known to have a role. Here, we show that TNF released by tolerogenic CD11+CD8+ DCs located in skin-draining lymph nodes is required and sufficient for development of tolerance to contact allergens in mice. DC-derived TNF protected mice from contact allergy by inducing apoptosis in allergen-specific effector CD8+ T cells via TNF receptor 2 but did not contribute to the generation and function of the regulatory T cells associated with LZT. The TNF-mediated killing mechanism was induced in an allergen-specific manner. Activation of tolerogenic DCs by LZT CD8+ suppressor T cells and enhanced TNF receptor 2 expression on contact allergen–specific CD8+ effector T cells were required for LZT. Our findings may explain how tolerance protects from allergic diseases, which could allow for the development of new strategies for allergy prevention.

Authors

Ulrike Luckey, Marcus Maurer, Talkea Schmidt, Nadine Lorenz, Beate Seebach, Martin Metz, Kerstin Steinbrink

×

The ALS-associated proteins FUS and TDP-43 function together to affect Drosophila locomotion and life span
Ji-Wu Wang, Jonathan R. Brent, Andrew Tomlinson, Neil A. Shneider, Brian D. McCabe
Ji-Wu Wang, Jonathan R. Brent, Andrew Tomlinson, Neil A. Shneider, Brian D. McCabe
View: Text | PDF

The ALS-associated proteins FUS and TDP-43 function together to affect Drosophila locomotion and life span

  • Text
  • PDF
Abstract

The fatal adult motor neuron disease amyotrophic lateral sclerosis (ALS) shares some clinical and pathological overlap with frontotemporal dementia (FTD), an early-onset neurodegenerative disorder. The RNA/DNA-binding proteins fused in sarcoma (FUS; also known as TLS) and TAR DNA binding protein-43 (TDP-43) have recently been shown to be genetically and pathologically associated with familial forms of ALS and FTD. It is currently unknown whether perturbation of these proteins results in disease through mechanisms that are independent of normal protein function or via the pathophysiological disruption of molecular processes in which they are both critical. Here, we report that Drosophila mutants in which the homolog of FUS is disrupted exhibit decreased adult viability, diminished locomotor speed, and reduced life span compared with controls. These phenotypes were fully rescued by wild-type human FUS, but not ALS-associated mutant FUS proteins. A mutant of the Drosophila homolog of TDP-43 had similar, but more severe, deficits. Through cross-rescue analysis, we demonstrated that FUS acted together with and downstream of TDP-43 in a common genetic pathway in neurons. Furthermore, we found that these proteins associated with each other in an RNA-dependent complex. Our results establish that FUS and TDP-43 function together in vivo and suggest that molecular pathways requiring the combined activities of both of these proteins may be disrupted in ALS and FTD.

Authors

Ji-Wu Wang, Jonathan R. Brent, Andrew Tomlinson, Neil A. Shneider, Brian D. McCabe

×
  • ← Previous
  • 1
  • 2
  • …
  • 452
  • 453
  • 454
  • …
  • 2575
  • 2576
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts