Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Research Article

  • 25,472 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 281
  • 282
  • 283
  • …
  • 2547
  • 2548
  • Next →
Bicarbonate correction of ketoacidosis alters host-pathogen interactions and alleviates mucormycosis
Teclegiorgis Gebremariam, … , Scott G. Filler, Ashraf S. Ibrahim
Teclegiorgis Gebremariam, … , Scott G. Filler, Ashraf S. Ibrahim
Published May 9, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI82744.
View: Text | PDF

Bicarbonate correction of ketoacidosis alters host-pathogen interactions and alleviates mucormycosis

  • Text
  • PDF
Abstract

Patients with diabetic ketoacidosis (DKA) are uniquely predisposed to mucormycosis, an angioinvasive fungal infection with high mortality. Previously, we demonstrated that Rhizopus invades the endothelium via binding of fungal CotH proteins to the host receptor GRP78. Here, we report that surface expression of GRP78 is increased in endothelial cells exposed to physiological concentrations of β-hydroxy butyrate (BHB), glucose, and iron that are similar to those found in DKA patients. Additionally, expression of R. oryzae CotH was increased within hours of incubation with DKA-associated concentrations of BHB, glucose, and iron, augmenting the ability of R. oryzae to invade and subsequently damage endothelial cells in vitro. BHB exposure also increased fungal growth and attenuated R. oryzae neutrophil-mediated damage. Further, mice given BHB developed clinical acidosis and became extremely susceptible to mucormycosis, but not aspergillosis, while sodium bicarbonate reversed this susceptibility. BHB-related acidosis exerted a direct effect on both GRP78 and CotH expression, an effect not seen with lactic acidosis. However, BHB also indirectly compromised the ability of transferrin to chelate iron, as iron chelation combined with sodium bicarbonate completely protected endothelial cells from Rhizopus-mediated invasion and damage. Our results dissect the pathogenesis of mucormycosis during ketoacidosis and reinforce the importance of careful metabolic control of the acidosis to prevent and manage this infection.

Authors

Teclegiorgis Gebremariam, Lin Lin, Mingfu Liu, Dimitrios P. Kontoyiannis, Samuel French, John E. Edwards Jr., Scott G. Filler, Ashraf S. Ibrahim

×

Reciprocal interplay between thyroid hormone and microRNA-21 regulates hedgehog pathway–driven skin tumorigenesis
Daniela Di Girolamo, … , Domenico Salvatore, Monica Dentice
Daniela Di Girolamo, … , Domenico Salvatore, Monica Dentice
Published May 9, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI84465.
View: Text | PDF

Reciprocal interplay between thyroid hormone and microRNA-21 regulates hedgehog pathway–driven skin tumorigenesis

  • Text
  • PDF
Abstract

The thyroid hormone–inactivating (TH-inactivating) enzyme type 3 iodothyronine deiodinase (D3) is an oncofetal protein that is rarely expressed in adult life but has been shown to be reactivated in the context of proliferation and neoplasms. D3 terminates TH action within the tumor microenvironment, thereby enhancing cancer cell proliferation. However, the pathological role of D3 and the contribution of TH metabolism in cancer have yet to be fully explored. Here, we describe a reciprocal regulation between TH action and the cancer-associated microRNA-21 (miR21) in basal cell carcinoma (BCC) skin tumors. We found that, besides being negatively regulated by TH at the transcriptional level, miR21 attenuates the TH signal by increasing D3 levels. The ability of miR21 to positively regulate D3 was mediated by the tumor suppressor gene GRHL3, a hitherto unrecognized D3 transcriptional inhibitor. Finally, in a BCC mouse model, keratinocyte-specific D3 depletion markedly reduced tumor growth. Together, our results establish TH action as a critical hub of multiple oncogenic pathways and provide functional and mechanistic evidence of the involvement of TH metabolism in BCC tumorigenesis. Moreover, our results identify a miR21/GRHL3/D3 axis that reduces TH in the tumor microenvironment and has potential to be targeted as a therapeutic approach to BCC.

Authors

Daniela Di Girolamo, Raffaele Ambrosio, Maria A. De Stefano, Giuseppina Mancino, Tommaso Porcelli, Cristina Luongo, Emery Di Cicco, Giulia Scalia, Luigi Del Vecchio, Annamaria Colao, Andrzej A. Dlugosz, Caterina Missero, Domenico Salvatore, Monica Dentice

×

Enhanced antagonism of BST-2 by a neurovirulent SIV envelope
Kenta Matsuda, … , Klaus Strebel, Vanessa M. Hirsch
Kenta Matsuda, … , Klaus Strebel, Vanessa M. Hirsch
Published May 9, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI83725.
View: Text | PDF

Enhanced antagonism of BST-2 by a neurovirulent SIV envelope

  • Text
  • PDF
Abstract

Current antiretroviral therapy (ART) is not sufficient to completely suppress disease progression in the CNS, as indicated by the rising incidence of HIV-1–associated neurocognitive disorders (HAND) among infected individuals on ART. It is not clear why some HIV-1–infected patients develop HAND, despite effective repression of viral replication in the circulation. SIV-infected nonhuman primate models are widely used to dissect the mechanisms of viral pathogenesis in the CNS. Here, we identified 4 amino acid substitutions in the cytoplasmic tail of viral envelope glycoprotein gp41 of the neurovirulent virus SIVsm804E that enhance replication in macrophages and associate with enhanced antagonism of the host restriction factor BM stromal cell antigen 2 (BST-2). Rhesus macaques were inoculated with a variant of the parental virus SIVsmE543-3 that had been engineered to contain the 4 amino acid substitutions present in gp41 of SIVsm804E. Compared with WT virus–infected controls, animals infected with mutant virus exhibited higher viral load in cerebrospinal fluid. Together, these results are consistent with a potential role for BST-2 in the CNS microenvironment and suggest that BST-2 antagonists may serve as a possible target for countermeasures against HAND.

Authors

Kenta Matsuda, Chia-Yen Chen, Sonya Whitted, Elena Chertova, David J. Roser, Fan Wu, Ronald J. Plishka, Ilnour Ourmanov, Alicia Buckler-White, Jeffrey D. Lifson, Klaus Strebel, Vanessa M. Hirsch

×

Proteolytic activation defines distinct lymphangiogenic mechanisms for VEGFC and VEGFD
Hung M. Bui, … , Kari Alitalo, Mark L. Kahn
Hung M. Bui, … , Kari Alitalo, Mark L. Kahn
Published May 9, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI83967.
View: Text | PDF

Proteolytic activation defines distinct lymphangiogenic mechanisms for VEGFC and VEGFD

  • Text
  • PDF
Abstract

Lymphangiogenesis is supported by 2 homologous VEGFR3 ligands, VEGFC and VEGFD. VEGFC is required for lymphatic development, while VEGFD is not. VEGFC and VEGFD are proteolytically cleaved after cell secretion in vitro, and recent studies have implicated the protease a disintegrin and metalloproteinase with thrombospondin motifs 3 (ADAMTS3) and the secreted factor collagen and calcium binding EGF domains 1 (CCBE1) in this process. It is not well understood how ligand proteolysis is controlled at the molecular level or how this process regulates lymphangiogenesis, because these complex molecular interactions have been difficult to follow ex vivo and test in vivo. Here, we have developed and used biochemical and cellular tools to demonstrate that an ADAMTS3-CCBE1 complex can form independently of VEGFR3 and is required to convert VEGFC, but not VEGFD, into an active ligand. Consistent with these ex vivo findings, mouse genetic studies revealed that ADAMTS3 is required for lymphatic development in a manner that is identical to the requirement of VEGFC and CCBE1 for lymphatic development. Moreover, CCBE1 was required for in vivo lymphangiogenesis stimulated by VEGFC but not VEGFD. Together, these studies reveal that lymphangiogenesis is regulated by two distinct proteolytic mechanisms of ligand activation: one in which VEGFC activation by ADAMTS3 and CCBE1 spatially and temporally patterns developing lymphatics, and one in which VEGFD activation by a distinct proteolytic mechanism may be stimulated during inflammatory lymphatic growth.

Authors

Hung M. Bui, David Enis, Marius R. Robciuc, Harri J. Nurmi, Jennifer Cohen, Mei Chen, Yiqing Yang, Veerpal Dhillon, Kathy Johnson, Hong Zhang, Robert Kirkpatrick, Elizabeth Traxler, Andrey Anisimov, Kari Alitalo, Mark L. Kahn

×

Cotargeting MNK and MEK kinases induces the regression of NF1-mutant cancers
Rebecca Lock, … , Jeremy R. Graff, Karen Cichowski
Rebecca Lock, … , Jeremy R. Graff, Karen Cichowski
Published May 9, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI85183.
View: Text | PDF

Cotargeting MNK and MEK kinases induces the regression of NF1-mutant cancers

  • Text
  • PDF
Abstract

Neurofibromin 1–mutant (NF1-mutant) cancers are driven by excessive Ras signaling; however, there are currently no effective therapies for these or other Ras-dependent tumors. While combined MEK and mTORC1 suppression causes regression of NF1-deficient malignancies in animal models, the potential toxicity of cotargeting these 2 major signaling pathways in humans may necessitate the identification of more refined, cancer-specific signaling nodes. Here, we have provided evidence that MAPK-interacting kinases (MNKs), which converge on the mTORC1 effector eIF4E, are therapeutic targets in NF1-deficient malignancies. Specifically, we evaluated primary human NF1-deficient peripheral nervous system tumors and found that MNKs are activated in the majority of tumors tested. Genetic and chemical suppression of MNKs in NF1-deficient murine tumor models and human cell lines potently cooperated with MEK inhibitors to kill these cancers through effects on eIF4E. We also demonstrated that MNK kinases are important and direct targets of cabozantinib. Accordingly, coadministration of cabozantinib and MEK inhibitors triggered dramatic regression in an aggressive genetically engineered tumor model. The cytotoxicity of this combination required the suppression of MNK-induced eIF4E phosphorylation and was not recapitulated by suppressing other cabozantinib targets. Collectively, these studies demonstrate that combined MNK and MEK suppression represents a promising therapeutic strategy for these incurable Ras-driven tumors and highlight the utility of developing selective MNK inhibitors for these and possibly other malignancies.

Authors

Rebecca Lock, Rachel Ingraham, Ophélia Maertens, Abigail L. Miller, Nelly Weledji, Eric Legius, Bruce M. Konicek, Sau-Chi B. Yan, Jeremy R. Graff, Karen Cichowski

×

Alternatively activated macrophages determine repair of the infarcted adult murine heart
Manabu Shiraishi, … , Kenta Yashiro, Ken Suzuki
Manabu Shiraishi, … , Kenta Yashiro, Ken Suzuki
Published May 3, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI85782.
View: Text | PDF

Alternatively activated macrophages determine repair of the infarcted adult murine heart

  • Text
  • PDF
Abstract

Alternatively activated (also known as M2) macrophages are involved in the repair of various types of organs. However, the contribution of M2 macrophages to cardiac repair after myocardial infarction (MI) remains to be fully characterized. Here, we identified CD206+F4/80+CD11b+ M2-like macrophages in the murine heart and demonstrated that this cell population predominantly increases in the infarct area and exhibits strengthened reparative abilities after MI. We evaluated mice lacking the kinase TRIB1 (Trib1–/–), which exhibit a selective depletion of M2 macrophages after MI. Compared with control animals, Trib1–/– mice had a catastrophic prognosis, with frequent cardiac rupture, as the result of markedly reduced collagen fibril formation in the infarct area due to impaired fibroblast activation. The decreased tissue repair observed in Trib1–/– mice was entirely rescued by an external supply of M2-like macrophages. Furthermore, IL-1α and osteopontin were suggested to be mediators of M2-like macrophage–induced fibroblast activation. In addition, IL-4 administration achieved a targeted increase in the number of M2-like macrophages and enhanced the post-MI prognosis of WT mice, corresponding with amplified fibroblast activation and formation of more supportive fibrous tissues in the infarcts. Together, these data demonstrate that M2-like macrophages critically determine the repair of infarcted adult murine heart by regulating fibroblast activation and suggest that IL-4 is a potential biological drug for treating MI.

Authors

Manabu Shiraishi, Yasunori Shintani, Yusuke Shintani, Hidekazu Ishida, Rie Saba, Atsushi Yamaguchi, Hideo Adachi, Kenta Yashiro, Ken Suzuki

×

cAMP/CREB-regulated LINC00473 marks LKB1-inactivated lung cancer and mediates tumor growth
Zirong Chen, … , Frederic J. Kaye, Lizi Wu
Zirong Chen, … , Frederic J. Kaye, Lizi Wu
Published May 3, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI85250.
View: Text | PDF

cAMP/CREB-regulated LINC00473 marks LKB1-inactivated lung cancer and mediates tumor growth

  • Text
  • PDF
Abstract

The LKB1 tumor suppressor gene is frequently mutated and inactivated in non–small cell lung cancer (NSCLC). Loss of LKB1 promotes cancer progression and influences therapeutic responses in preclinical studies; however, specific targeted therapies for lung cancer with LKB1 inactivation are currently unavailable. Here, we have identified a long noncoding RNA (lncRNA) signature that is associated with the loss of LKB1 function. We discovered that LINC00473 is consistently the most highly induced gene in LKB1-inactivated human primary NSCLC samples and derived cell lines. Elevated LINC00473 expression correlated with poor prognosis, and sustained LINC00473 expression was required for the growth and survival of LKB1-inactivated NSCLC cells. Mechanistically, LINC00473 was induced by LKB1 inactivation and subsequent cyclic AMP–responsive element–binding protein (CREB)/CREB-regulated transcription coactivator (CRTC) activation. We determined that LINC00473 is a nuclear lncRNA and interacts with NONO, a component of the cAMP signaling pathway, thereby facilitating CRTC/CREB-mediated transcription. Collectively, our study demonstrates that LINC00473 expression potentially serves as a robust biomarker for tumor LKB1 functional status that can be integrated into clinical trials for patient selection and treatment evaluation, and implicates LINC00473 as a therapeutic target for LKB1-inactivated NSCLC.

Authors

Zirong Chen, Jian-Liang Li, Shuibin Lin, Chunxia Cao, Nicholas T. Gimbrone, Rongqiang Yang, Dongtao A. Fu, Miranda B. Carper, Eric B. Haura, Matthew B. Schabath, Jianrong Lu, Antonio L. Amelio, W. Douglas Cress, Frederic J. Kaye, Lizi Wu

×

Hepatic glycogen can regulate hypoglycemic counterregulation via a liver-brain axis
Jason J. Winnick, … , Eric Allen, Alan D. Cherrington
Jason J. Winnick, … , Eric Allen, Alan D. Cherrington
Published May 3, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI79895.
View: Text | PDF

Hepatic glycogen can regulate hypoglycemic counterregulation via a liver-brain axis

  • Text
  • PDF
Abstract

Liver glycogen is important for the counterregulation of hypoglycemia and is reduced in individuals with type 1 diabetes (T1D). Here, we examined the effect of varying hepatic glycogen content on the counterregulatory response to low blood sugar in dogs. During the first 4 hours of each study, hepatic glycogen was increased by augmenting hepatic glucose uptake using hyperglycemia and a low-dose intraportal fructose infusion. After hepatic glycogen levels were increased, animals underwent a 2-hour control period with no fructose infusion followed by a 2-hour hyperinsulinemic/hypoglycemic clamp. Compared with control treatment, fructose infusion caused a large increase in liver glycogen that markedly elevated the response of epinephrine and glucagon to a given hypoglycemia and increased net hepatic glucose output (NHGO). Moreover, prior denervation of the liver abolished the improved counterregulatory responses that resulted from increased liver glycogen content. When hepatic glycogen content was lowered, glucagon and NHGO responses to insulin-induced hypoglycemia were reduced. We conclude that there is a liver-brain counterregulatory axis that is responsive to liver glycogen content. It remains to be determined whether the risk of iatrogenic hypoglycemia in T1D humans could be lessened by targeting metabolic pathway(s) associated with hepatic glycogen repletion.

Authors

Jason J. Winnick, Guillaume Kraft, Justin M. Gregory, Dale S. Edgerton, Phillip Williams, Ian A. Hajizadeh, Maahum Z. Kamal, Marta Smith, Ben Farmer, Melanie Scott, Doss Neal, E. Patrick Donahue, Eric Allen, Alan D. Cherrington

×

CHD4-regulated plasmin activation impacts lymphovenous hemostasis and hepatic vascular integrity
Patrick L. Crosswhite, … , R. Sathish Srinivasan, Courtney T. Griffin
Patrick L. Crosswhite, … , R. Sathish Srinivasan, Courtney T. Griffin
Published May 3, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI84652.
View: Text | PDF

CHD4-regulated plasmin activation impacts lymphovenous hemostasis and hepatic vascular integrity

  • Text
  • PDF
Abstract

The chromatin-remodeling enzyme CHD4 maintains vascular integrity at mid-gestation; however, it is unknown whether this enzyme contributes to later blood vessel or lymphatic vessel development. Here, we addressed this issue in mice harboring a deletion of Chd4 specifically in cells that express lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1), which include lymphatic endothelial cells (LECs) and liver sinusoidal endothelial cells. Chd4 mutant embryos died before birth and exhibited severe edema, blood-filled lymphatics, and liver hemorrhage. CHD4-deficient embryos developed normal lymphovenous (LV) valves, which regulate the return of lymph to the blood circulation; however, these valves lacked the fibrin-rich thrombi that prevent blood from entering the lymphatic system. Transcripts of the urokinase plasminogen activator receptor (uPAR), which facilitates activation of the fibrin-degrading protease plasmin, were upregulated in Chd4 mutant LYVE1+ cells, and plasmin activity was elevated near the LV valves. Genetic reduction of the uPAR ligand urokinase prevented degradation of fibrin-rich thrombi at the LV valves and largely resolved the blood-filled lymphatics in Chd4 mutants. Urokinase reduction also ameliorated liver hemorrhage and prolonged embryonic survival by reducing plasmin-mediated extracellular matrix degradation around sinusoidal blood vessels. These results highlight the susceptibility of LV thrombi and liver sinusoidal vessels to plasmin-mediated damage and demonstrate the importance of CHD4 in regulating embryonic plasmin activation after mid-gestation.

Authors

Patrick L. Crosswhite, Joanna J. Podsiadlowska, Carol D. Curtis, Siqi Gao, Lijun Xia, R. Sathish Srinivasan, Courtney T. Griffin

×

Public T cell receptors confer high-avidity CD4 responses to HIV controllers
Daniela Benati, … , Fernando Arenzana-Seisdedos, Lisa A. Chakrabarti
Daniela Benati, … , Fernando Arenzana-Seisdedos, Lisa A. Chakrabarti
Published April 25, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI83792.
View: Text | PDF

Public T cell receptors confer high-avidity CD4 responses to HIV controllers

  • Text
  • PDF
Abstract

The rare patients who are able to spontaneously control HIV replication in the absence of therapy show signs of a particularly efficient cellular immune response. To identify the molecular determinants that underlie this response, we characterized the T cell receptor (TCR) repertoire directed at Gag293, the most immunoprevalent CD4 epitope in the HIV-1 capsid. HIV controllers from the ANRS CODEX cohort showed a highly skewed TCR repertoire that was characterized by a predominance of TRAV24 and TRBV2 variable genes, shared CDR3 motifs, and a high frequency of public clonotypes. The most prevalent public clonotypes generated TCRs with affinities at the higher end of values reported for naturally occurring TCRs. The high-affinity Gag293-specific TCRs were cross-restricted by up to 5 distinct HLA-DR alleles, accounting for the expression of these TCRs in HIV controllers of diverse genetic backgrounds. Transfer of these TCRs to healthy donor CD4+ T cells conferred high antigen sensitivity and polyfunctionality, thus recapitulating key features of the controller CD4 response. Transfer of a high-affinity Gag293-specific TCR also redirected CD8+ T cells to target HIV-1 capsid via nonconventional MHC II restriction. Together, these findings indicate that TCR clonotypes with superior functions are associated with HIV control. Amplification or transfer of such clonotypes may contribute to immunotherapeutic approaches aiming at a functional HIV cure.

Authors

Daniela Benati, Moran Galperin, Olivier Lambotte, Stéphanie Gras, Annick Lim, Madhura Mukhopadhyay, Alexandre Nouël, Kristy-Anne Campbell, Brigitte Lemercier, Mathieu Claireaux, Samia Hendou, Pierre Lechat, Pierre de Truchis, Faroudy Boufassa, Jamie Rossjohn, Jean-François Delfraissy, Fernando Arenzana-Seisdedos, Lisa A. Chakrabarti

×
  • ← Previous
  • 1
  • 2
  • …
  • 281
  • 282
  • 283
  • …
  • 2547
  • 2548
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts