Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Research Article

  • 25,558 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 426
  • 427
  • 428
  • …
  • 2555
  • 2556
  • Next →
Histamine-releasing factor has a proinflammatory role in mouse models of asthma and allergy
Jun-ichi Kashiwakura, … , Yuko Kawakami, Toshiaki Kawakami
Jun-ichi Kashiwakura, … , Yuko Kawakami, Toshiaki Kawakami
Published December 1, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI59072.
View: Text | PDF

Histamine-releasing factor has a proinflammatory role in mouse models of asthma and allergy

  • Text
  • PDF
Abstract

IgE-mediated activation of mast cells and basophils underlies allergic diseases such as asthma. Histamine-releasing factor (HRF; also known as translationally controlled tumor protein [TCTP] and fortilin) has been implicated in late-phase allergic reactions (LPRs) and chronic allergic inflammation, but its functions during asthma are not well understood. Here, we identified a subset of IgE and IgG antibodies as HRF-interacting molecules in vitro. HRF was able to dimerize and bind to Igs via interactions of its N-terminal and internal regions with the Fab region of Igs. Therefore, HRF together with HRF-reactive IgE was able to activate mast cells in vitro. In mouse models of asthma and allergy, Ig-interacting HRF peptides that were shown to block HRF/Ig interactions in vitro inhibited IgE/HRF-induced mast cell activation and in vivo cutaneous anaphylaxis and airway inflammation. Intranasally administered HRF recruited inflammatory immune cells to the lung in naive mice in a mast cell– and Fc receptor–dependent manner. These results indicate that HRF has a proinflammatory role in asthma and skin immediate hypersensitivity, leading us to suggest HRF as a potential therapeutic target.

Authors

Jun-ichi Kashiwakura, Tomoaki Ando, Kenji Matsumoto, Miho Kimura, Jiro Kitaura, Michael H. Matho, Dirk M. Zajonc, Tomomitsu Ozeki, Chisei Ra, Susan M. MacDonald, Reuben P. Siraganian, David H. Broide, Yuko Kawakami, Toshiaki Kawakami

×

EGFR as a therapeutic target for human, canine, and mouse ACTH-secreting pituitary adenomas
Hidenori Fukuoka, … , Dave Bruyette, Shlomo Melmed
Hidenori Fukuoka, … , Dave Bruyette, Shlomo Melmed
Published November 21, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI60417.
View: Text | PDF

EGFR as a therapeutic target for human, canine, and mouse ACTH-secreting pituitary adenomas

  • Text
  • PDF
Abstract

Cushing disease is a condition in which the pituitary gland releases excessive adrenocorticotropic hormone (ACTH) as a result of an adenoma arising from the ACTH-secreting cells in the anterior pituitary. ACTH-secreting pituitary adenomas lead to hypercortisolemia and cause significant morbidity and mortality. Pituitary-directed medications are mostly ineffective, and new treatment options are needed. As these tumors express EGFR, we tested whether EGFR might provide a therapeutic target for Cushing disease. Here, we show that in surgically resected human and canine corticotroph cultured tumors, blocking EGFR suppressed expression of proopiomelanocortin (POMC), the ACTH precursor. In mouse corticotroph EGFR transfectants, ACTH secretion was enhanced, and EGF increased Pomc promoter activity, an effect that was dependent on MAPK. Blocking EGFR activity with gefitinib, an EGFR tyrosine kinase inhibitor, attenuated Pomc expression, inhibited corticotroph tumor cell proliferation, and induced apoptosis. As predominantly nuclear EGFR expression was observed in canine and human corticotroph tumors, we preferentially targeted EGFR to mouse corticotroph cell nuclei, which resulted in higher Pomc expression and ACTH secretion, both of which were inhibited by gefitinib. In athymic nude mice, EGFR overexpression enhanced the growth of explanted ACTH-secreting tumors and further elevated serum corticosterone levels. Gefitinib treatment decreased both tumor size and corticosterone levels; it also reversed signs of hypercortisolemia, including elevated glucose levels and excess omental fat. These results indicate that inhibiting EGFR signaling may be a novel strategy for treating Cushing disease.

Authors

Hidenori Fukuoka, Odelia Cooper, Anat Ben-Shlomo, Adam Mamelak, Song-Guang Ren, Dave Bruyette, Shlomo Melmed

×

Age-related increases in PGD2 expression impair respiratory DC migration, resulting in diminished T cell responses upon respiratory virus infection in mice
Jincun Zhao, … , Kevin Legge, Stanley Perlman
Jincun Zhao, … , Kevin Legge, Stanley Perlman
Published November 21, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI59777.
View: Text | PDF

Age-related increases in PGD2 expression impair respiratory DC migration, resulting in diminished T cell responses upon respiratory virus infection in mice

  • Text
  • PDF
Abstract

The morbidity and mortality associated with respiratory virus infection is felt most keenly among the elderly. T cells are necessary for viral clearance, and many age-dependent intrinsic T cell defects have been documented. However, the development of robust T cell responses in the lung also requires respiratory DCs (rDCs), which must process antigen and migrate to draining LNs (DLNs), and little is known about age-related defects in these T cell–extrinsic functions. Here, we show that increases in prostaglandin D2 (PGD2) expression in mouse lungs upon aging correlate with a progressive impairment in rDC migration to DLNs. Decreased rDC migration resulted in diminished T cell responses and more severe clinical disease in older mice infected with respiratory viruses. Diminished rDC migration associated with virus-specific defects in T cell responses and was not a result of cell-intrinsic defect, rather it reflected the observed age-dependent increases in PGD2 expression. Blocking PGD2 function with small-molecule antagonists enhanced rDC migration, T cell responses, and survival. This effect correlated with upregulation on rDCs of CCR7, a chemokine receptor involved in DC chemotaxis. Our results suggest that inhibiting PGD2 function may be a useful approach to enhance T cell responses against respiratory viruses in older humans.

Authors

Jincun Zhao, Jingxian Zhao, Kevin Legge, Stanley Perlman

×

Valosin-containing protein and neurofibromin interact to regulate dendritic spine density
Hsiao-Fang Wang, … , Ming-Jen Lee, Yi-Ping Hsueh
Hsiao-Fang Wang, … , Ming-Jen Lee, Yi-Ping Hsueh
Published November 21, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI45677.
View: Text | PDF

Valosin-containing protein and neurofibromin interact to regulate dendritic spine density

  • Text
  • PDF
Abstract

Inclusion body myopathy with Paget disease of bone and frontotemporal dementia (IBMPFD) is an autosomal dominant disorder characterized by progressive myopathy that is often accompanied by bone weakening and/or frontotemporal dementia. Although it is known to be caused by mutations in the gene encoding valosin-containing protein (VCP), the underlying disease mechanism remains elusive. Like IBMPFD, neurofibromatosis type 1 (NF1) is an autosomal dominant disorder. Neurofibromin, the protein encoded by the NF1 gene, has been shown to regulate synaptogenesis. Here, we show that neurofibromin and VCP interact and work together to control the density of dendritic spines. Certain mutations identified in IBMPFD and NF1 patients reduced the interaction between VCP and neurofibromin and impaired spinogenesis. The functions of neurofibromin and VCP in spinogenesis were shown to correlate with the learning disability and dementia phenotypes seen in patients with IBMPFD. Consistent with the previous finding that treatment with a statin rescues behavioral defects in Nf1+/– mice and providing further support for our hypothesis that there is crosstalk between neurofibromin and VCP, statin exposure neutralized the effect of VCP knockdown on spinogenesis in cultured hippocampal neurons. The data presented here demonstrate that there is a link between IBMPFD and NF1 and indicate a role for VCP in synapse formation.

Authors

Hsiao-Fang Wang, Yu-Tzu Shih, Chiung-Ya Chen, Hsu-Wen Chao, Ming-Jen Lee, Yi-Ping Hsueh

×

Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration
Yann Malato, … , Dirk Grimm, Holger Willenbring
Yann Malato, … , Dirk Grimm, Holger Willenbring
Published November 21, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI59261.
View: Text | PDF

Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration

  • Text
  • PDF
Abstract

Recent evidence has contradicted the prevailing view that homeostasis and regeneration of the adult liver are mediated by self duplication of lineage-restricted hepatocytes and biliary epithelial cells. These new data suggest that liver progenitor cells do not function solely as a backup system in chronic liver injury; rather, they also produce hepatocytes after acute injury and are in fact the main source of new hepatocytes during normal hepatocyte turnover. In addition, other evidence suggests that hepatocytes are capable of lineage conversion, acting as precursors of biliary epithelial cells during biliary injury. To test these concepts, we generated a hepatocyte fate-tracing model based on timed and specific Cre recombinase expression and marker gene activation in all hepatocytes of adult Rosa26 reporter mice with an adenoassociated viral vector. We found that newly formed hepatocytes derived from preexisting hepatocytes in the normal liver and that liver progenitor cells contributed minimally to acute hepatocyte regeneration. Further, we found no evidence that biliary injury induced conversion of hepatocytes into biliary epithelial cells. These results therefore restore the previously prevailing paradigms of liver homeostasis and regeneration. In addition, our new vector system will be a valuable tool for timed, efficient, and specific loop out of floxed sequences in hepatocytes.

Authors

Yann Malato, Syed Naqvi, Nina Schürmann, Raymond Ng, Bruce Wang, Joan Zape, Mark A. Kay, Dirk Grimm, Holger Willenbring

×

Herpes simplex encephalitis in children with autosomal recessive and dominant TRIF deficiency
Vanessa Sancho-Shimizu, … , Saleh Al-Muhsen, Jean-Laurent Casanova
Vanessa Sancho-Shimizu, … , Saleh Al-Muhsen, Jean-Laurent Casanova
Published November 21, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI59259.
View: Text | PDF

Herpes simplex encephalitis in children with autosomal recessive and dominant TRIF deficiency

  • Text
  • PDF
Abstract

Herpes simplex encephalitis (HSE) is the most common sporadic viral encephalitis of childhood. Autosomal recessive (AR) UNC-93B and TLR3 deficiencies and autosomal dominant (AD) TLR3 and TRAF3 deficiencies underlie HSE in some children. We report here unrelated HSE children with AR or AD TRIF deficiency. The AR form of the disease was found to be due to a homozygous nonsense mutation that resulted in a complete absence of the TRIF protein. Both the TLR3- and the TRIF-dependent TLR4 signaling pathways were abolished. The AD form of disease was found to be due to a heterozygous missense mutation, resulting in a dysfunctional protein. In this form of the disease, the TLR3 signaling pathway was impaired, whereas the TRIF-dependent TLR4 pathway was unaffected. Both patients, however, showed reduced capacity to respond to stimulation of the DExD/H-box helicases pathway. To date, the TRIF-deficient patients with HSE described herein have suffered from no other infections. Moreover, as observed in patients with other genetic etiologies of HSE, clinical penetrance was found to be incomplete, as some HSV-1–infected TRIF-deficient relatives have not developed HSE. Our results provide what we believe to be the first description of human TRIF deficiency and a new genetic etiology for HSE. They suggest that the TRIF-dependent TLR4 and DExD/H-box helicase pathways are largely redundant in host defense. They further demonstrate the importance of TRIF for the TLR3-dependent production of antiviral IFNs in the CNS during primary infection with HSV-1 in childhood.

Authors

Vanessa Sancho-Shimizu, Rebeca Pérez de Diego, Lazaro Lorenzo, Rabih Halwani, Abdullah Alangari, Elisabeth Israelsson, Sylvie Fabrega,, Annabelle Cardon, Jerome Maluenda, Megumi Tatematsu, Farhad Mahvelati, Melina Herman, Michael Ciancanelli, Yiqi Guo, Zobaida AlSum, Nouf Alkhamis, Abdulkarim S. Al-Makadma, Ata Ghadiri, Soraya Boucherit, Sabine Plancoulaine, Capucine Picard, Flore Rozenberg, Marc Tardieu, Pierre Lebon, Emmanuelle Jouanguy, Nima Rezaei, Tsukasa Seya, Misako Matsumoto, Damien Chaussabel, Anne Puel, Shen-Ying Zhang, Laurent Abel, Saleh Al-Muhsen, Jean-Laurent Casanova

×

Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation
Debyani Chakravarty, … , Ronald Ghossein, James A. Fagin
Debyani Chakravarty, … , Ronald Ghossein, James A. Fagin
Published November 21, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI46382.
View: Text | PDF

Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation

  • Text
  • PDF
Abstract

Advanced human thyroid cancers, particularly those that are refractory to treatment with radioiodine (RAI), have a high prevalence of BRAF (v-raf murine sarcoma viral oncogene homolog B1) mutations. However, the degree to which these cancers are dependent on BRAF expression is still unclear. To address this question, we generated mice expressing one of the most commonly detected BRAF mutations in human papillary thyroid carcinomas (BRAFV600E) in thyroid follicular cells in a doxycycline-inducible (dox-inducible) manner. Upon dox induction of BRAFV600E, the mice developed highly penetrant and poorly differentiated thyroid tumors. Discontinuation of dox extinguished BRAFV600E expression and reestablished thyroid follicular architecture and normal thyroid histology. Switching on BRAFV600E rapidly induced hypothyroidism and virtually abolished thyroid-specific gene expression and RAI incorporation, all of which were restored to near basal levels upon discontinuation of dox. Treatment of mice with these cancers with small molecule inhibitors of either MEK or mutant BRAF reduced their proliferative index and partially restored thyroid-specific gene expression. Strikingly, treatment with the MAPK pathway inhibitors rendered the tumor cells susceptible to a therapeutic dose of RAI. Our data show that thyroid tumors carrying BRAFV600E mutations are exquisitely dependent on the oncoprotein for viability and that genetic or pharmacological inhibition of its expression or activity is associated with tumor regression and restoration of RAI uptake in vivo in mice. These findings have potentially significant clinical ramifications.

Authors

Debyani Chakravarty, Elmer Santos, Mabel Ryder, Jeffrey A. Knauf, Xiao-Hui Liao, Brian L. West, Gideon Bollag, Richard Kolesnick, Tin Htwe Thin, Neal Rosen, Pat Zanzonico, Steven M. Larson, Samuel Refetoff, Ronald Ghossein, James A. Fagin

×

Mechanotransduction in mouse inner ear hair cells requires transmembrane channel–like genes
Yoshiyuki Kawashima, … , Jeffrey R. Holt, Andrew J. Griffith
Yoshiyuki Kawashima, … , Jeffrey R. Holt, Andrew J. Griffith
Published November 21, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI60405.
View: Text | PDF

Mechanotransduction in mouse inner ear hair cells requires transmembrane channel–like genes

  • Text
  • PDF
Abstract

Inner ear hair cells convert the mechanical stimuli of sound, gravity, and head movement into electrical signals. This mechanotransduction process is initiated by opening of cation channels near the tips of hair cell stereocilia. Since the identity of these ion channels is unknown, and mutations in the gene encoding transmembrane channel–like 1 (TMC1) cause hearing loss without vestibular dysfunction in both mice and humans, we investigated the contribution of Tmc1 and the closely related Tmc2 to mechanotransduction in mice. We found that Tmc1 and Tmc2 were expressed in mouse vestibular and cochlear hair cells and that GFP-tagged TMC proteins localized near stereocilia tips. Tmc2 expression was transient in early postnatal mouse cochlear hair cells but persisted in vestibular hair cells. While mice with a targeted deletion of Tmc1 (Tmc1Δ mice) were deaf and those with a deletion of Tmc2 (Tmc2Δ mice) were phenotypically normal, Tmc1ΔTmc2Δ mice had profound vestibular dysfunction, deafness, and structurally normal hair cells that lacked all mechanotransduction activity. Expression of either exogenous TMC1 or TMC2 rescued mechanotransduction in Tmc1ΔTmc2Δ mutant hair cells. Our results indicate that TMC1 and TMC2 are necessary for hair cell mechanotransduction and may be integral components of the mechanotransduction complex. Our data also suggest that persistent TMC2 expression in vestibular hair cells may preserve vestibular function in humans with hearing loss caused by TMC1 mutations.

Authors

Yoshiyuki Kawashima, Gwenaëlle S.G. Géléoc, Kiyoto Kurima, Valentina Labay, Andrea Lelli, Yukako Asai, Tomoko Makishima, Doris K. Wu, Charles C. Della Santina, Jeffrey R. Holt, Andrew J. Griffith

×

Tbx20 regulates a genetic program essential to adult mouse cardiomyocyte function
Tao Shen, … , Marcelo A. Nobrega, Sylvia M. Evans
Tao Shen, … , Marcelo A. Nobrega, Sylvia M. Evans
Published November 14, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI59472.
View: Text | PDF

Tbx20 regulates a genetic program essential to adult mouse cardiomyocyte function

  • Text
  • PDF
Abstract

Human mutations in or variants of TBX20 are associated with congenital heart disease, cardiomyopathy, and arrhythmias. To investigate whether cardiac disease in patients with these conditions results from an embryonic or ongoing requirement for Tbx20 in myocardium, we ablated Tbx20 specifically in adult cardiomyocytes in mice. This ablation resulted in the onset of severe cardiomyopathy accompanied by arrhythmias, with death ensuing within 1 to 2 weeks of Tbx20 ablation. Accounting for this dramatic phenotype, we identified molecular signatures that posit Tbx20 as a central integrator of a genetic program that maintains cardiomyocyte function in the adult heart. Expression of a number of genes encoding critical transcription factors, ion channels, and cytoskeletal/myofibrillar proteins was downregulated consequent to loss of Tbx20. Genome-wide ChIP analysis of Tbx20-binding regions in the adult heart revealed that many of these genes were direct downstream targets of Tbx20 and uncovered a previously undescribed DNA-binding site for Tbx20. Bioinformatics and in vivo functional analyses revealed a cohort of transcription factors that, working with Tbx20, integrated multiple environmental signals to maintain ion channel gene expression in the adult heart. Our data provide insight into the mechanisms by which mutations in TBX20 cause adult heart disease in humans.

Authors

Tao Shen, Ivy Aneas, Noboru Sakabe, Ralf J. Dirschinger, Gang Wang, Scott Smemo, John M. Westlund, Hongqiang Cheng, Nancy Dalton, Yusu Gu, Cornelis J. Boogerd, Chen-leng Cai, Kirk Peterson, Ju Chen, Marcelo A. Nobrega, Sylvia M. Evans

×

T cell protein tyrosine phosphatase attenuates T cell signaling to maintain tolerance in mice
Florian Wiede, … , Dale I. Godfrey, Tony Tiganis
Florian Wiede, … , Dale I. Godfrey, Tony Tiganis
Published November 14, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI59492.
View: Text | PDF | Corrigendum

T cell protein tyrosine phosphatase attenuates T cell signaling to maintain tolerance in mice

  • Text
  • PDF
Abstract

Many autoimmune diseases exhibit familial aggregation, indicating that they have genetic determinants. Single nucleotide polymorphisms in PTPN2, which encodes T cell protein tyrosine phosphatase (TCPTP), have been linked with the development of several autoimmune diseases, including type 1 diabetes and Crohn’s disease. In this study, we have identified TCPTP as a key negative regulator of TCR signaling, which might explain the association of PTPN2 SNPs with autoimmune disease. We found that TCPTP dephosphorylates and inactivates Src family kinases to regulate T cell responses. Using T cell–specific TCPTP-deficient mice, we established that TCPTP attenuates T cell activation and proliferation in vitro and blunts antigen-induced responses in vivo. TCPTP deficiency lowered the in vivo threshold for TCR-dependent CD8+ T cell proliferation. Consistent with this, T cell–specific TCPTP-deficient mice developed widespread inflammation and autoimmunity that was transferable to wild-type recipient mice by CD8+ T cells alone. This autoimmunity was associated with increased serum levels of proinflammatory cytokines and anti-nuclear antibodies, T cell infiltrates in non-lymphoid tissues, and liver disease. These data indicate that TCPTP is a critical negative regulator of TCR signaling that sets the threshold for TCR-induced naive T cell responses to prevent autoimmune and inflammatory disorders arising.

Authors

Florian Wiede, Benjamin J. Shields, Sock Hui Chew, Konstantinos Kyparissoudis, Catherine van Vliet, Sandra Galic, Michel L. Tremblay, Sarah M. Russell, Dale I. Godfrey, Tony Tiganis

×
  • ← Previous
  • 1
  • 2
  • …
  • 426
  • 427
  • 428
  • …
  • 2555
  • 2556
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts