Therapeutic anticancer vaccines are designed to boost patients’ immune responses to tumors. One approach is to use a viral vector to deliver antigen to in situ DCs, which then activate tumor-specific T cell and antibody responses. However, vector-specific neutralizing antibodies and suppressive cell populations such as Tregs remain great challenges to the efficacy of this approach. We report here that an alphavirus vector, packaged in virus-like replicon particles (VRP) and capable of efficiently infecting DCs, could be repeatedly administered to patients with metastatic cancer expressing the tumor antigen carcinoembryonic antigen (CEA) and that it overcame high titers of neutralizing antibodies and elevated Treg levels to induce clinically relevant CEA-specific T cell and antibody responses. The CEA-specific antibodies mediated antibody-dependent cellular cytotoxicity against tumor cells from human colorectal cancer metastases. In addition, patients with CEA-specific T cell responses exhibited longer overall survival. These data suggest that VRP-based vectors can overcome the presence of neutralizing antibodies to break tolerance to self antigen and may be clinically useful for immunotherapy in the setting of tumor-induced immunosuppression.
Michael A. Morse, Amy C. Hobeika, Takuya Osada, Peter Berglund, Bolyn Hubby, Sarah Negri, Donna Niedzwiecki, Gayathri R. Devi, Bruce K. Burnett, Timothy M. Clay, Jonathan Smith, H. Kim Lyerly
Development of a vaccine that targets blood-stage malaria parasites is imperative if we are to sustainably reduce the morbidity and mortality caused by this infection. Such a vaccine should elicit long-lasting immune responses against conserved determinants in the parasite population. Most blood-stage vaccines, however, induce protective antibodies against surface antigens, which tend to be polymorphic. Cell-mediated responses, on the other hand, offer the theoretical advantage of targeting internal antigens that are more likely to be conserved. Nonetheless, few of the current blood-stage vaccine candidates are able to harness vigorous T cell immunity. Here, we present what we believe to be a novel blood-stage whole-organism vaccine that, by combining low doses of killed parasite with CpG-oligodeoxynucleotide (CpG-ODN) adjuvant, was able to elicit strong and cross-reactive T cell responses in mice. Our data demonstrate that immunization of mice with 1,000 killed parasites in CpG-ODN engendered durable and cross-strain protection by inducing a vigorous response that was dependent on CD4+ T cells, IFN-γ, and nitric oxide. If applicable to humans, this approach should facilitate the generation of robust, cross-reactive T cell responses against malaria as well as antigen availability for vaccine manufacture.
Alberto Pinzon-Charry, Virginia McPhun, Vivian Kienzle, Chakrit Hirunpetcharat, Christian Engwerda, James McCarthy, Michael F. Good
Vaccinia virus (VV) vaccination is used to immunize against smallpox and historically was considered to have been successful if a skin lesion formed at the vaccination site. While antibody responses have been widely proposed as a correlate of efficacy and protection in humans, the role of cellular and humoral immunity in VV-associated skin lesion formation was unknown. We therefore investigated whether long-term residual humoral and cellular immune memory to VV, persisting 30 years after vaccination, could control VV-induced skin lesion in revaccinated individuals. Here, we have shown that residual VV-specific IFN-γ+TNF-α+ or IFN-γ+IL-2+ CD4+ lymphocytes but not CD8+ effector/memory lymphocytes expressing a skin-homing marker are inversely associated with the size of the skin lesion formed in response to revaccination. Indeed, high numbers of residual effector T cells were associated with lower VV skin lesion size after revaccination. In contrast, long-term residual VV-specific neutralizing antibody (NAbs) titers did not affect skin lesion formation. However, the size of the skin lesion strongly correlated with high levels of NAbs boosted after revaccination. These findings demonstrate a potential role for VV-specific CD4+ responses at the site of VV-associated skin lesion, thereby providing new insight into immune responses at these sites and potentially contributing to the development of new approaches to measure the efficacy of VV vaccination.
Bénédicte Puissant-Lubrano, Philippe Bossi, Frederick Gay, Jean-Marc Crance, Olivia Bonduelle, Daniel Garin, François Bricaire, Brigitte Autran, Behazine Combadière
Vaccine strategies that utilize human DCs to enhance antitumor immunity have yet to realize their full potential. Approaches that optimally target a spectrum of antigens to DCs are urgently needed. Here we report the development of a platform for loading DCs with antigen. It is based on killed but metabolically active (KBMA) recombinant Listeria monocytogenes and facilitates both antigen delivery and maturation of human DCs. Highly attenuated KBMA L. monocytogenes were engineered to express an epitope of the melanoma-associated antigen MelanA/Mart-1 that is recognized by human CD8+ T cells when presented by the MHC class I molecule HLA-A*0201. The engineered KBMA L. monocytogenes induced human DC upregulation of costimulatory molecules and secretion of pro-Th1 cytokines and type I interferons, leading to effective priming of Mart-1–specific human CD8+ T cells and lysis of patient-derived melanoma cells. KBMA L. monocytogenes expressing full-length NY-ESO-1 protein, another melanoma-associated antigen, delivered the antigen for presentation by MHC class I and class II molecules independent of the MHC haplotype of the DC donor. A mouse therapeutic tumor model was used to show that KBMA L. monocytogenes efficiently targeted APCs in vivo to induce protective antitumor responses. Together, our data demonstrate that KBMA L. monocytogenes may be a powerful platform that can both deliver recombinant antigen to DCs for presentation and provide a potent DC-maturation stimulus, making it a potential cancer vaccine candidate.
Mojca Skoberne, Alice Yewdall, Keith S. Bahjat, Emmanuelle Godefroy, Peter Lauer, Edward Lemmens, Weiqun Liu, Will Luckett, Meredith Leong, Thomas W. Dubensky, Dirk G. Brockstedt, Nina Bhardwaj
Recombinant adeno-associated virus (rAAV) vectors were used in human trials as carriers of vaccines for HIV-1 after encouraging preclinical results. However, the clinical trials yielded disappointing results. Here we demonstrated that in mice, rAAV vectors expressing the gene encoding HIV-1 gag stimulated gag-specific CD8+ T cells, but these T cells failed to expand after a booster immunization with a replication-defective adenoviral (Ad) vector also expressing gag. We tested rAAV vectors of different serotypes expressing HIV-1 gag for induction of transgene product–specific CD8+ T cells and found that the immunoinhibitory effect of rAAV priming observed with different AAV serotypes was transgene product specific, was independent of the interval between prime and boost, and extended to boosts with vaccine modalities other than Ad vectors. rAAV vector–induced CD8+ T cells proliferated poorly, produced low levels of IFN-γ in response to gag stimulation, and upregulated immunoinhibitory molecules. These T cells did not protect efficiently against challenge with a surrogate pathogen. Finally, we showed that the impaired proliferative capacity of the T cells was caused by persistence of the antigen-encoding rAAV vectors and could be reversed by placing the CD8+ T cells in an antigen-free environment. Our data suggest that rAAV vectors induce functionally impaired T cells and could dampen the immune response to a natural infection.
Shih-Wen Lin, Scott E. Hensley, Nia Tatsis, Marcio O. Lasaro, Hildegund C.J. Ertl
Initial immune responses to allergens may occur before birth, thereby modulating the subsequent development of atopy. This paradigm remains controversial, however, due to the inability to identify antigen-specific T cells in cord blood. The advent of MHC tetramers has revolutionized the detection of antigen-specific T cells. Tetramer staining of cord blood after CMV infection has demonstrated that effective CD8+ antigen-specific immune responses can follow intrauterine viral infections. We hypothesized that sensitization to antigens occurs in utero in humans. We studied cord blood B and T cell immune responses following vaccination against influenza during pregnancy. Anti-Fluzone and anti-matrix protein IgM antibodies were detected in 38.5% (27 of 70) and 40.0% (28 of 70), respectively, of cord blood specimens. Using MHC tetramers, HA-specific CD4+ T cells were detected among 25.0% (3 of 12) and 42.9% (6 of 14) of cord blood specimens possessing DRB1*0101 and DRB1*0401 HLA types, respectively, and were detected even when the DRB1 HLA type was inherited from the father. Matrix protein–specific CD8+ T cells were detected among 10.0% (2 of 20) of HLA-A*0201+ newborns. These results suggest that B and T cell immune responses occur in the fetus following vaccination against influenza and have important implications for determining when immune responses to environmental exposures begin.
Deepa Rastogi, Chaodong Wang, Xia Mao, Cynthia Lendor, Paul B. Rothman, Rachel L. Miller
Bacterial vectors may offer many advantages over other antigen delivery systems for cancer vaccines. We engineered a Salmonella typhimuriumvaccine strain to deliver the NY-ESO-1 tumor antigen (S. typhimurium–NY-ESO-1) through a type III protein secretion system. The S. typhimurium–NY-ESO-1 construct elicited NY-ESO-1–specific CD8+ and CD4+ T cells from peripheral blood lymphocytes ofcancer patients in vitro. Oral administration of S. typhimurium–NY-ESO-1 to mice resulted in the regression of established NY-ESO-1–expressing tumors. Intratumoral inoculation of S. typhimurium–NY-ESO-1 to NY-ESO-1–negative tumors resulted in delivery of antigen in vivo and led to tumor regression in the presence of preexisting NY-ESO-1–specific CD8+ T cells. Specific T cell responses against at least 2 unrelated tumor antigens not contained in the vaccine were observed, demonstrating epitope spreading. We propose that antigen delivery through the S. typhimuriumtype III secretion system is a promising novel strategy for cancer vaccine development.
Hiroyoshi Nishikawa, Eiichi Sato, Gabriel Briones, Li-Mei Chen, Mitsutoshi Matsuo, Yasuhiro Nagata, Gerd Ritter, Elke Jäger, Hideki Nomura, Shigeto Kondo, Isao Tawara, Takuma Kato, Hiroshi Shiku, Lloyd J. Old, Jorge E. Galán, Sacha Gnjatic
Immunotherapy for the treatment of metastatic melanoma remains a major clinical challenge. The melanoma microenvironment may lead to local T cell tolerance in part through downregulation of costimulatory molecules, such as B7.1 (CD80). We report the results from the first clinical trial, to our knowledge, using a recombinant vaccinia virus expressing B7.1 (rV-B7.1) for monthly intralesional vaccination of accessible melanoma lesions. A standard 2-dose–escalation phase I clinical trial was conducted with 12 patients. The approach was well tolerated with only low-grade fever, myalgias, and fatigue reported and 2 patients experiencing vitiligo. An objective partial response was observed in 1 patient and disease stabilization in 2 patients, 1 of whom is alive without disease 59 months following vaccination. All patients demonstrated an increase in postvaccination antibody and T cell responses against vaccinia virus. Systemic immunity was tested in HLA-A*0201 patients who demonstrated an increased frequency of gp100 and T cells specific to melanoma antigen recognized by T cells 1 (MART-1), also known as Melan-A, by ELISPOT assay following local rV-B7.1 vaccination. Local immunity was evaluated by quantitative real-time RT-PCR, which suggested that tumor regression was associated with increased expression of CD8 and IFN-γ. The local delivery of vaccinia virus expressing B7.1 was well tolerated and represents an innovative strategy for altering the local tumor microenvironment in patients with melanoma.
Howard L. Kaufman, Gail DeRaffele, Josephine Mitcham, Dorota Moroziewicz, Seth M. Cohen, Karl S. Hurst-Wicker, Ken Cheung, David S. Lee, Joseph Divito, Magalese Voulo, Julie Donovan, Kate Dolan, Kelledy Manson, Dennis Panicali, Ena Wang, Heidi Hörig, Francesco M. Marincola
Current models of T cell memory implicate a critical role for IL-7 in the effector-to-memory transition, raising the possibility that IL-7 therapy might enhance vaccine responses. IL-7 has not been studied, to our knowledge, before now for adjuvant activity. We administered recombinant human IL-7 (rhIL-7) to mice during immunization against the male antigen HY and compared these results with those obtained from mice immunized with rhIL-2 and rhIL-15. Administration of rhIL-7 or rhIL-15, but not rhIL-2, increased effector cells directed against these dominant antigens and dramatically enhanced CD8+ effectors to subdominant antigens. The mechanisms by which the cytokines augmented effector pool generation were multifactorial and included rhIL-7–mediated costimulation and rhIL-15–mediated augmentation of the proliferative burst. The contraction phase of the antigen-specific response was exaggerated in cytokine-treated mice; however, CD8+ memory pools in rhIL-7– or rhIL-15–treated groups demonstrated superior long-term survival resulting in quantitative advantages that remained long after the cytokines were discontinued, as demonstrated by improved survival after challenge with an HY-expressing tumor undertaken several weeks after cytokine cessation. These results confirm the adjuvant activity of rhIL-15 and demonstrate that rhIL-7 also serves as a potent vaccine adjuvant that broadens immunity by augmenting responses to subdominant antigens and improving the survival of the CD8+ T cell memory pool.
Fraia Melchionda, Terry J. Fry, Matthew J. Milliron, Melissa A. McKirdy, Yutaka Tagaya, Crystal L. Mackall
Pseudomonas aeruginosa is an important opportunistic pathogen that can cause chronic and often life-threatening infections of the respiratory tract, particularly in individuals with cystic fibrosis (CF). Because infections with P. aeruginosa remain the major cause of the high morbidity and mortality of CF, a vaccine against P. aeruginosa would be very useful for preventing this disorder. The outer membrane protein F (OprF) of P. aeruginosa is a promising vaccine candidate and various B cell epitopes within OprF have been identified. Given that adenovirus (Ad) vectors have strong immunogenic potential and can function as adjuvants for genetic vaccines, the present study evaluates the immunogenic and protective properties of a novel replication-deficient Ad vector in which the Ad hexon protein was modified to include a 14–amino acid epitope of P. aeruginosa OprF (Epi8) in loop 1 of the hypervariable region 5 of the hexon (AdZ.Epi8). Immunization of C57BL/6 mice with AdZ.Epi8 resulted in detectable serum anti–P. aeruginosa and anti-OprF humoral responses. These responses were haplotype dependent, with higher serum anti-OprF titers in CBA mice than in BALB/c or C57BL/6 mice. AdZ.Epi8 induced Epi8-specific IFN-γ–positive CD4 and CD8 T cell responses and resulted in protection against a lethal pulmonary challenge with agar-encapsulated P. aeruginosa. Importantly, repeated administration of AdZ.Epi8 resulted in boosting of the anti-OprF humoral and anti-Epi8 cellular response, whereas no boosting effect was present in the response against the transgene β-galactosidase. These observations suggest that Ad vectors expressing pathogen epitopes in their capsid will protect against an extracellular pathogen and will allow boosting of the epitope-specific humoral response with repeated administration, a strategy that should prove useful in developing Ad vectors as vaccines where humoral immunity will be protective.
Stefan Worgall, Anja Krause, Michael Rivara, Kyung-Kim Hee, Enrico V. Vintayen, Neil R. Hackett, Peter W. Roelvink, Joseph T. Bruder, Thomas J. Wickham, Imre Kovesdi, Ronald G. Crystal
No posts were found with this tag.