Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Reproductive biology

  • 74 Articles
  • 1 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 5
  • 6
  • 7
  • 8
  • Next →
Progesterone and HMOX-1 promote fetal growth by CD8+ T cell modulation
María Emilia Solano, … , Khalil Karimi, Petra Clara Arck
María Emilia Solano, … , Khalil Karimi, Petra Clara Arck
Published March 16, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI68140.
View: Text | PDF

Progesterone and HMOX-1 promote fetal growth by CD8+ T cell modulation

  • Text
  • PDF
Abstract

Intrauterine growth restriction (IUGR) affects up to 10% of pregnancies in Western societies. IUGR is a strong predictor of reduced short-term neonatal survival and impairs long-term health in children. Placental insufficiency is often associated with IUGR; however, the molecular mechanisms involved in the pathogenesis of placental insufficiency and IUGR are largely unknown. Here, we developed a mouse model of fetal-growth restriction and placental insufficiency that is induced by a midgestational stress challenge. Compared with control animals, pregnant dams subjected to gestational stress exhibited reduced progesterone levels and placental heme oxygenase 1 (Hmox1) expression and increased methylation at distinct regions of the placental Hmox1 promoter. These stress-triggered changes were accompanied by an altered CD8+ T cell response, as evidenced by a reduction of tolerogenic CD8+CD122+ T cells and an increase of cytotoxic CD8+ T cells. Using progesterone receptor– or Hmox1-deficient mice, we identified progesterone as an upstream modulator of placental Hmox1 expression. Supplementation of progesterone or depletion of CD8+ T cells revealed that progesterone suppresses CD8+ T cell cytotoxicity, whereas the generation of CD8+CD122+ T cells is supported by Hmox1 and ameliorates fetal-growth restriction in Hmox1 deficiency. These observations in mice could promote the identification of pregnancies at risk for IUGR and the generation of clinical interventional strategies.

Authors

María Emilia Solano, Mirka Katharina Kowal, Greta Eugenia O’Rourke, Andrea Kristina Horst, Kathrin Modest, Torsten Plösch, Roja Barikbin, Chressen Catharina Remus, Robert G. Berger, Caitlin Jago, Hoang Ho, Gabriele Sass, Victoria J. Parker, John P. Lydon, Francesco J. DeMayo, Kurt Hecher, Khalil Karimi, Petra Clara Arck

×

Hyaluronan in cervical epithelia protects against infection-mediated preterm birth
Yucel Akgul, … , Justin Hanes, Mala Mahendroo
Yucel Akgul, … , Justin Hanes, Mala Mahendroo
Published November 10, 2014
Citation Information: J Clin Invest. 2014. https://doi.org/10.1172/JCI78765.
View: Text | PDF

Hyaluronan in cervical epithelia protects against infection-mediated preterm birth

  • Text
  • PDF
Abstract

Increased synthesis of cervical hyaluronan (HA) from early to late pregnancy has long been proposed to play an essential role in disorganization of the collagen-rich extracellular matrix to allow for maximal compliance and dilation of the cervix during the birth process. Here, we show that HA is not essential for increased cervical distensibility during late pregnancy. Rather, cervicovaginal HA plays an unanticipated important role in epithelial barrier protection of the lower reproductive tract. Specifically, HA depletion in the cervix and vagina resulted in inappropriate differentiation of epithelial cells, increased epithelial and mucosal permeability, and strikingly increased preterm birth rates in a mouse model of ascending vaginal infection. Collectively, these findings revealed that although HA is not obligatory for cervical compliance, it is crucial for maintaining an epithelial and mucosal barrier to limit pathogen infiltration of the lower reproductive tract during pregnancy and thereby is protective against infection-mediated preterm birth.

Authors

Yucel Akgul, R. Ann Word, Laura M. Ensign, Yu Yamaguchi, John Lydon, Justin Hanes, Mala Mahendroo

×

Maternal uterine NK cell–activating receptor KIR2DS1 enhances placentation
Shiqiu Xiong, … , Francesco Colucci, Ashley Moffett
Shiqiu Xiong, … , Francesco Colucci, Ashley Moffett
Published September 16, 2013
Citation Information: J Clin Invest. 2013. https://doi.org/10.1172/JCI68991.
View: Text | PDF

Maternal uterine NK cell–activating receptor KIR2DS1 enhances placentation

  • Text
  • PDF
Abstract

Reduced trophoblast invasion and vascular conversion in decidua are thought to be the primary defect of common pregnancy disorders including preeclampsia and fetal growth restriction. Genetic studies suggest these conditions are linked to combinations of polymorphic killer cell Ig-like receptor (KIR) genes expressed by maternal decidual NK cells (dNK) and HLA-C genes expressed by fetal trophoblast. Inhibitory KIR2DL1 and activating KIR2DS1 both bind HLA-C2, but confer increased risk or protection from pregnancy disorders, respectively. The mechanisms underlying these genetic associations with opposing outcomes are unknown. We show that KIR2DS1 is highly expressed in dNK, stimulating strong activation of KIR2DS1+ dNK. We used microarrays to identify additional responses triggered by binding of KIR2DS1 or KIR2DL1 to HLA-C2 and found different responses in dNK coexpressing KIR2DS1 with KIR2DL1 compared with dNK only expressing KIR2DL1. Activation of KIR2DS1+ dNK by HLA-C2 stimulated production of soluble products including GM-CSF, detected by intracellular FACS and ELISA. We demonstrated that GM-CSF enhanced migration of primary trophoblast and JEG-3 trophoblast cells in vitro. These findings provide a molecular mechanism explaining how recognition of HLA class I molecules on fetal trophoblast by an activating KIR on maternal dNK may be beneficial for placentation.

Authors

Shiqiu Xiong, Andrew M. Sharkey, Philippa R. Kennedy, Lucy Gardner, Lydia E. Farrell, Olympe Chazara, Julien Bauer, Susan E. Hiby, Francesco Colucci, Ashley Moffett

×

Combinatory approaches prevent preterm birth profoundly exacerbated by gene-environment interactions
Jeeyeon Cha, … , Sudhansu K. Dey, Yasushi Hirota
Jeeyeon Cha, … , Sudhansu K. Dey, Yasushi Hirota
Published August 27, 2013
Citation Information: J Clin Invest. 2013. https://doi.org/10.1172/JCI70098.
View: Text | PDF

Combinatory approaches prevent preterm birth profoundly exacerbated by gene-environment interactions

  • Text
  • PDF
Abstract

There are currently more than 15 million preterm births each year. We propose that gene-environment interaction is a major contributor to preterm birth. To address this experimentally, we generated a mouse model with uterine deletion of Trp53, which exhibits approximately 50% incidence of spontaneous preterm birth due to premature decidual senescence with increased mTORC1 activity and COX2 signaling. Here we provide evidence that this predisposition provoked preterm birth in 100% of females exposed to a mild inflammatory insult with LPS, revealing the high significance of gene-environment interactions in preterm birth. More intriguingly, preterm birth was rescued in LPS-treated Trp53-deficient mice when they were treated with a combination of rapamycin (mTORC1 inhibitor) and progesterone (P4), without adverse effects on maternal or fetal health. These results provide evidence for the cooperative contributions of two sites of action (decidua and ovary) toward preterm birth. Moreover, a similar signature of decidual senescence with increased mTORC1 and COX2 signaling was observed in women undergoing preterm birth. Collectively, our findings show that superimposition of inflammation on genetic predisposition results in high incidence of preterm birth and suggest that combined treatment with low doses of rapamycin and P4 may help reduce the incidence of preterm birth in high-risk women.

Authors

Jeeyeon Cha, Amanda Bartos, Mahiro Egashira, Hirofumi Haraguchi, Tomoko Saito-Fujita, Emma Leishman, Heather Bradshaw, Sudhansu K. Dey, Yasushi Hirota

×

Macrophages regulate corpus luteum development during embryo implantation in mice
Alison S. Care, … , Wendy V. Ingman, Sarah A. Robertson
Alison S. Care, … , Wendy V. Ingman, Sarah A. Robertson
Published July 8, 2013
Citation Information: J Clin Invest. 2013. https://doi.org/10.1172/JCI60561.
View: Text | PDF

Macrophages regulate corpus luteum development during embryo implantation in mice

  • Text
  • PDF
Abstract

Macrophages are prominent in the uterus and ovary at conception. Here we utilize the Cd11b-Dtr mouse model of acute macrophage depletion to define the essential role of macrophages in early pregnancy. Macrophage depletion after conception caused embryo implantation arrest associated with diminished plasma progesterone and poor uterine receptivity. Implantation failure was alleviated by administration of bone marrow–derived CD11b+F4/80+ monocytes/macrophages. In the ovaries of macrophage-depleted mice, corpora lutea were profoundly abnormal, with elevated Ptgs2, Hif1a, and other inflammation and apoptosis genes and with diminished expression of steroidogenesis genes Star, Cyp11a1, and Hsd3b1. Infertility was rescued by exogenous progesterone, which confirmed that uterine refractoriness was fully attributable to the underlying luteal defect. In normally developing corpora lutea, macrophages were intimately juxtaposed with endothelial cells and expressed the proangiogenic marker TIE2. After macrophage depletion, substantial disruption of the luteal microvascular network occurred and was associated with altered ovarian expression of genes that encode vascular endothelial growth factors. These data indicate a critical role for macrophages in supporting the extensive vascular network required for corpus luteum integrity and production of progesterone essential for establishing pregnancy. Our findings raise the prospect that disruption of macrophage-endothelial cell interactions underpinning corpus luteum development contributes to infertility in women in whom luteal insufficiency is implicated.

Authors

Alison S. Care, Kerrilyn R. Diener, Melinda J. Jasper, Hannah M. Brown, Wendy V. Ingman, Sarah A. Robertson

×

BMPR2 is required for postimplantation uterine function and pregnancy maintenance
Takashi Nagashima, … , Francesco J. DeMayo, Martin M. Matzuk
Takashi Nagashima, … , Francesco J. DeMayo, Martin M. Matzuk
Published May 8, 2013
Citation Information: J Clin Invest. 2013. https://doi.org/10.1172/JCI65710.
View: Text | PDF

BMPR2 is required for postimplantation uterine function and pregnancy maintenance

  • Text
  • PDF
Abstract

Abnormalities in cell-cell communication and growth factor signaling pathways can lead to defects in maternal-fetal interactions during pregnancy, including immunologic rejection of the fetal/placental unit. In this study, we discovered that bone morphogenetic protein receptor type 2 (BMPR2) is essential for postimplantation physiology and fertility. Despite normal implantation and early placental/fetal development, deletion of Bmpr2 in the uterine deciduae of mice triggered midgestation abnormalities in decidualization that resulted in abnormal vascular development, trophoblast defects, and a deficiency of uterine natural killer cells. Absence of BMPR2 signaling in the uterine decidua consequently suppressed IL-15, VEGF, angiopoietin, and corin signaling. Disruption of these pathways collectively lead to placental abruption, fetal demise, and female sterility, thereby placing BMPR2 at a central point in the regulation of several physiologic signaling pathways and events at the maternal-fetal interface. Since trophoblast invasion and uterine vascular modification are implicated in normal placentation and fetal growth in humans, our findings suggest that abnormalities in uterine BMPR2-mediated signaling pathways can have catastrophic consequences in women for the maintenance of pregnancy.

Authors

Takashi Nagashima, Qinglei Li, Caterina Clementi, John P. Lydon, Francesco J. DeMayo, Martin M. Matzuk

×

Fetal-derived adrenomedullin mediates the innate immune milieu of the placenta
Manyu Li, … , Christopher P. Mack, Kathleen M. Caron
Manyu Li, … , Christopher P. Mack, Kathleen M. Caron
Published May 1, 2013
Citation Information: J Clin Invest. 2013. https://doi.org/10.1172/JCI67039.
View: Text | PDF

Fetal-derived adrenomedullin mediates the innate immune milieu of the placenta

  • Text
  • PDF
Abstract

The remodeling of maternal uterine spiral arteries (SAs) is an essential process for ensuring low-resistance, high-capacitance blood flow to the growing fetus. Failure of SAs to remodel is causally associated with preeclampsia, a common and life-threatening complication of pregnancy that is harmful to both mother and fetus. Here, using both loss-of-function and gain-of-function genetic mouse models, we show that expression of the pregnancy-related peptide adrenomedullin (AM) by fetal trophoblast cells is necessary and sufficient to promote appropriate recruitment and activation of maternal uterine NK (uNK) cells to the placenta and ultimately facilitate remodeling of maternal SAs. Placentas that lacked either AM or its receptor exhibited reduced fetal vessel branching in the labyrinth, failed SA remodeling and reendothelialization, and markedly reduced numbers of maternal uNK cells. In contrast, overexpression of AM caused a reversal of these phenotypes with a concomitant increase in uNK cell content in vivo. Moreover, AM dose-dependently stimulated the secretion of numerous chemokines, cytokines, and MMPs from uNK cells, which in turn induced VSMC apoptosis. These data identify an essential function for fetal-derived factors in the maternal vascular adaptation to pregnancy and underscore the importance of exploring AM as a biomarker and therapeutic agent for preeclampsia.

Authors

Manyu Li, Nicole M.J. Schwerbrock, Patricia M. Lenhart, Kimberly L. Fritz-Six, Mahita Kadmiel, Kathleen S. Christine, Daniel M. Kraus, Scott T. Espenschied, Helen H. Willcockson, Christopher P. Mack, Kathleen M. Caron

×

Foxo1 is required in mouse spermatogonial stem cells for their maintenance and the initiation of spermatogenesis
Meredith J. Goertz, … , F. Kent Hamra, Diego H. Castrillon
Meredith J. Goertz, … , F. Kent Hamra, Diego H. Castrillon
Published August 25, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI57984.
View: Text | PDF

Foxo1 is required in mouse spermatogonial stem cells for their maintenance and the initiation of spermatogenesis

  • Text
  • PDF
Abstract

Spermatogonial stem cells (SSCs) capable of self-renewal and differentiation are the foundation for spermatogenesis. Although several factors important for these processes have been identified, the fundamental mechanisms regulating SSC self-renewal and differentiation remain unknown. Here, we investigated a role for the Foxo transcription factors in mouse spermatogenesis and found that Foxo1 specifically marks mouse gonocytes and a subset of spermatogonia with stem cell potential. Genetic analyses showed that Foxo1 was required for both SSC homeostasis and the initiation of spermatogenesis. Combined deficiency of Foxo1, Foxo3, and Foxo4 resulted in a severe impairment of SSC self-renewal and a complete block of differentiation, indicating that Foxo3 and Foxo4, although dispensable for male fertility, contribute to SSC function. By conditional inactivation of 3-phosphoinositide–dependent protein kinase 1 (Pdk1) and phosphatase and tensin homolog (Pten) in the male germ line, we found that PI3K signaling regulates Foxo1 stability and subcellular localization, revealing that the Foxos are pivotal effectors of PI3K-Akt signaling in SSCs. We also identified a network of Foxo gene targets — most notably Ret — that rationalized the maintenance of SSCs by the Foxos. These studies demonstrate that Foxo1 expression in the spermatogenic lineage is intimately associated with the stem cell state and revealed what we believe to be novel Foxo-dependent mechanisms underlying SSC self-renewal and differentiation, with implications for common diseases, including male infertility and testicular cancer, due to abnormalities in SSC function.

Authors

Meredith J. Goertz, Zhuoru Wu, Teresa D. Gallardo, F. Kent Hamra, Diego H. Castrillon

×

Death effector domain–containing protein (DEDD) is required for uterine decidualization during early pregnancy in mice
Mayumi Mori, … , Satoko Arai, Toru Miyazaki
Mayumi Mori, … , Satoko Arai, Toru Miyazaki
Published December 6, 2010
Citation Information: J Clin Invest. 2010. https://doi.org/10.1172/JCI44723.
View: Text | PDF

Death effector domain–containing protein (DEDD) is required for uterine decidualization during early pregnancy in mice

  • Text
  • PDF
Abstract

During intrauterine life, the mammalian embryo survives via its physical connection to the mother. The uterine decidua, which differentiates from stromal cells after implantation in a process known as decidualization, plays essential roles in supporting embryonic growth before establishment of the placenta. Here we show that female mice lacking death effector domain–containing protein (DEDD) are infertile owing to unsuccessful decidualization. In uteri of Dedd–/– mice, development of the decidual zone and the surrounding edema after embryonic implantation was defective. This was subsequently accompanied by disintegration of implantation site structure, leading to embryonic death before placentation. Polyploidization, a hallmark of mature decidual cells, was attenuated in DEDD-deficient cells during decidualization. Such inefficient decidualization appeared to be caused by decreased Akt levels, since polyploidization was restored in DEDD-deficient decidual cells by overexpression of Akt. In addition, we showed that DEDD associates with and stabilizes cyclin D3, an important element in polyploidization, and that overexpression of cyclin D3 in DEDD-deficient cells improved polyploidization. These results indicate that DEDD is indispensable for the establishment of an adequate uterine environment to support early pregnancy in mice.

Authors

Mayumi Mori, Miwako Kitazume, Rui Ose, Jun Kurokawa, Kaori Koga, Yutaka Osuga, Satoko Arai, Toru Miyazaki

×

Sirt3 protects in vitro–fertilized mouse preimplantation embryos against oxidative stress–induced p53-mediated developmental arrest
Yumiko Kawamura, … , Yukiko Kurihara, Hiroki Kurihara
Yumiko Kawamura, … , Yukiko Kurihara, Hiroki Kurihara
Published July 19, 2010
Citation Information: J Clin Invest. 2010. https://doi.org/10.1172/JCI42020.
View: Text | PDF

Sirt3 protects in vitro–fertilized mouse preimplantation embryos against oxidative stress–induced p53-mediated developmental arrest

  • Text
  • PDF
Abstract

Sirtuins are a phylogenetically conserved NAD+-dependent protein deacetylase/ADP-ribosyltransferase family implicated in diverse biological processes. Several family members localize to mitochondria, the function of which is thought to determine the developmental potential of preimplantation embryos. We have therefore characterized the role of sirtuins in mouse preimplantation development under in vitro culture conditions. All sirtuin members were expressed in eggs, and their expression gradually decreased until the blastocyst stage. Treatment with sirtuin inhibitors resulted in increased intracellular ROS levels and decreased blastocyst formation. These effects were recapitulated by siRNA-induced knockdown of Sirt3, which is involved in mitochondrial energy metabolism, and in Sirt3–/– embryos. The antioxidant N-acetyl-L-cysteine and low-oxygen conditions rescued these adverse effects. When Sirt3-knockdown embryos were transferred to pseudopregnant mice after long-term culture, implantation and fetal growth rates were decreased, indicating that Sirt3-knockdown embryos were sensitive to in vitro conditions and that the effect was long lasting. Further experiments revealed that maternally derived Sirt3 was critical. Sirt3 inactivation increased mitochondrial ROS production, leading to p53 upregulation and changes in downstream gene expression. The inactivation of p53 improved the developmental outcome of Sirt3-knockdown embryos, indicating that the ROS-p53 pathway was responsible for the developmental defects. These results indicate that Sirt3 plays a protective role in preimplantation embryos against stress conditions during in vitro fertilization and culture.

Authors

Yumiko Kawamura, Yasunobu Uchijima, Nanao Horike, Kazuo Tonami, Koichi Nishiyama, Tomokazu Amano, Tomoichiro Asano, Yukiko Kurihara, Hiroki Kurihara

×
  • ← Previous
  • 1
  • 2
  • …
  • 5
  • 6
  • 7
  • 8
  • Next →
Protection against preterm labor
Yucel Akgul and colleagues reveal that the glycosaminoglycan hyaluronan is necessary for barrier function in the lower reproductive tract and protects against pathogen-induced preterm birth...
Published November 10, 2014
Scientific Show StopperReproductive biology
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts