Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Neuroscience

  • 630 Articles
  • 7 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 52
  • 53
  • 54
  • …
  • 62
  • 63
  • Next →
NFAT/Fas signaling mediates the neuronal apoptosis and motor side effects of GSK-3 inhibition in a mouse model of lithium therapy
Raquel Gómez-Sintes, José J. Lucas
Raquel Gómez-Sintes, José J. Lucas
Published June 7, 2010
Citation Information: J Clin Invest. 2010. https://doi.org/10.1172/JCI37873.
View: Text | PDF

NFAT/Fas signaling mediates the neuronal apoptosis and motor side effects of GSK-3 inhibition in a mouse model of lithium therapy

  • Text
  • PDF
Abstract

Use of lithium, the mainstay for treatment of bipolar disorder, is limited by its frequent neurological side effects and its risk for overdose-induced toxicity. Recently, lithium has also been proposed as a treatment for Alzheimer disease and other neurodegenerative conditions, but clinical trials have been hampered by its prominent side effects in the elderly. The mechanisms underlying both the positive and negative effects of lithium are not fully known. Lithium inhibits glycogen synthase kinase–3 (GSK-3) in vivo, and we recently reported neuronal apoptosis and motor deficits in dominant-negative GSK-3–transgenic mice. We hypothesized that therapeutic levels of lithium could also induce neuronal loss through GSK-3 inhibition. Here we report induction of neuronal apoptosis in various brain regions and the presence of motor deficits in mice treated chronically with lithium. We found that GSK-3 inhibition increased translocation of nuclear factor of activated T cells c3/4 (NFATc3/4) transcription factors to the nucleus, leading to increased Fas ligand (FasL) levels and Fas activation. Lithium-induced apoptosis and motor deficits were absent when NFAT nuclear translocation was prevented by cyclosporin A administration and in Fas-deficient lpr mice. The results of these studies suggest a mechanism for lithium-induced neuronal and motor toxicity. These findings may enable the development of combined therapies that diminish the toxicities of lithium and possibly other GSK-3 inhibitors and extend their potential to the treatment of Alzheimer disease and other neurodegenerative conditions.

Authors

Raquel Gómez-Sintes, José J. Lucas

×

NMDA-induced neuronal survival is mediated through nuclear factor I-A in mice
Sika Zheng, … , Ted M. Dawson, Valina L. Dawson
Sika Zheng, … , Ted M. Dawson, Valina L. Dawson
Published June 1, 2010
Citation Information: J Clin Invest. 2010. https://doi.org/10.1172/JCI33144.
View: Text | PDF

NMDA-induced neuronal survival is mediated through nuclear factor I-A in mice

  • Text
  • PDF
Abstract

Identification of the signaling pathways that mediate neuronal survival signaling could lead to new therapeutic targets for neurologic disorders and stroke. Sublethal doses of NMDA can induce robust endogenous protective mechanisms in neurons. Through differential analysis of primary library expression and microarray analyses, here we have shown that nuclear factor I, subtype A (NFI-A), a member of the NFI/CAAT-box transcription factor family, is induced in mouse neurons by NMDA receptor activation in a NOS- and ERK-dependent manner. Knockdown of NFI-A induction using siRNA substantially reduced the neuroprotective effects of sublethal doses of NMDA. Further analysis indicated that NFI-A transcriptional activity was required for the neuroprotective effects of NMDA receptor activation. Additional evidence of the neuroprotective effects of NFI-A was provided by the observations that Nfia–/– neurons were highly sensitive to NMDA-induced excitotoxicity and were more susceptible to developmental cell death than wild-type neurons and that Nfia+/– mice were more sensitive to NMDA-induced intrastriatal lesions than were wild-type animals. These results identify NFI-A as what we believe to be a novel neuroprotective transcription factor with implications in neuroprotection and neuronal plasticity following NMDA receptor activation.

Authors

Sika Zheng, Stephen M. Eacker, Suk Jin Hong, Richard M. Gronostajski, Ted M. Dawson, Valina L. Dawson

×

Tissue-type plasminogen activator is a neuroprotectant in the mouse hippocampus
Ramiro Echeverry, … , Johanna Guzman, Manuel Yepes
Ramiro Echeverry, … , Johanna Guzman, Manuel Yepes
Published May 3, 2010
Citation Information: J Clin Invest. 2010. https://doi.org/10.1172/JCI41722.
View: Text | PDF

Tissue-type plasminogen activator is a neuroprotectant in the mouse hippocampus

  • Text
  • PDF
Abstract

The best-known function of the serine protease tissue-type plasminogen activator (tPA) is as a thrombolytic enzyme. However, it is also found in structures of the brain that are highly vulnerable to hypoxia-induced cell death, where its association with neuronal survival is poorly understood. Here, we have demonstrated that hippocampal areas of the mouse brain lacking tPA activity are more vulnerable to neuronal death following an ischemic insult. We found that sublethal hypoxia, which elicits tolerance to subsequent lethal hypoxic/ischemic injury in a natural process known as ischemic preconditioning (IPC), induced a rapid release of neuronal tPA. Treatment of hippocampal neurons with tPA induced tolerance against a lethal hypoxic insult applied either immediately following insult (early IPC) or 24 hours later (delayed IPC). tPA-induced early IPC was independent of the proteolytic activity of tPA and required the engagement of a member of the LDL receptor family. In contrast, tPA-induced delayed IPC required the proteolytic activity of tPA and was mediated by plasmin, the NMDA receptor, and PKB phosphorylation. We also found that IPC in vivo increased tPA activity in the cornu ammonis area 1 (CA1) layer and Akt phosphorylation in the hippocampus, as well as ischemic tolerance in wild-type but not tPA- or plasminogen-deficient mice. These data show that tPA can act as an endogenous neuroprotectant in the murine hippocampus.

Authors

Ramiro Echeverry, Jialing Wu, Woldeab B. Haile, Johanna Guzman, Manuel Yepes

×

Small molecule BDNF mimetics activate TrkB signaling and prevent neuronal degeneration in rodents
Stephen M. Massa, … , Jayakumar Rajadas, Frank M. Longo
Stephen M. Massa, … , Jayakumar Rajadas, Frank M. Longo
Published April 19, 2010
Citation Information: J Clin Invest. 2010. https://doi.org/10.1172/JCI41356.
View: Text | PDF

Small molecule BDNF mimetics activate TrkB signaling and prevent neuronal degeneration in rodents

  • Text
  • PDF
Abstract

Brain-derived neurotrophic factor (BDNF) activates the receptor tropomyosin-related kinase B (TrkB) with high potency and specificity, promoting neuronal survival, differentiation, and synaptic function. Correlations between altered BDNF expression and/or function and mechanism(s) underlying numerous neurodegenerative conditions, including Alzheimer disease and traumatic brain injury, suggest that TrkB agonists might have therapeutic potential. Using in silico screening with a BDNF loop–domain pharmacophore, followed by low-throughput in vitro screening in mouse fetal hippocampal neurons, we have efficiently identified small molecules with nanomolar neurotrophic activity specific to TrkB versus other Trk family members. Neurotrophic activity was dependent on TrkB and its downstream targets, although compound-induced signaling activation kinetics differed from those triggered by BDNF. A selected prototype compound demonstrated binding specificity to the extracellular domain of TrkB. In in vitro models of neurodegenerative disease, it prevented neuronal degeneration with efficacy equal to that of BDNF, and when administered in vivo, it caused hippocampal and striatal TrkB activation in mice and improved motor learning after traumatic brain injury in rats. These studies demonstrate the utility of loop modeling in drug discovery and reveal what we believe to be the first reported small molecules derived from a targeted BDNF domain that specifically activate TrkB.We propose that these compounds constitute a novel group of tools for the study of TrkB signaling and may provide leads for developing new therapeutic agents for neurodegenerative diseases.

Authors

Stephen M. Massa, Tao Yang, Youmei Xie, Jian Shi, Mehmet Bilgen, Jeffrey N. Joyce, Dean Nehama, Jayakumar Rajadas, Frank M. Longo

×

CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy
Marco A. Passini, … , Lamya S. Shihabuddin, Seng H. Cheng
Marco A. Passini, … , Lamya S. Shihabuddin, Seng H. Cheng
Published March 15, 2010
Citation Information: J Clin Invest. 2010. https://doi.org/10.1172/JCI41615.
View: Text | PDF

CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy

  • Text
  • PDF
Abstract

Spinal muscular atrophy (SMA) is a neuromuscular disease caused by a deficiency of survival motor neuron (SMN) due to mutations in the SMN1 gene. In this study, an adeno-associated virus (AAV) vector expressing human SMN (AAV8-hSMN) was injected at birth into the CNS of mice modeling SMA. Western blot analysis showed that these injections resulted in widespread expression of SMN throughout the spinal cord, and this translated into robust improvement in skeletal muscle physiology, including increased myofiber size and improved neuromuscular junction architecture. Treated mice also displayed substantial improvements on behavioral tests of muscle strength, coordination, and locomotion, indicating that the neuromuscular junction was functional. Treatment with AAV8-hSMN increased the median life span of mice with SMA-like disease to 50 days compared with 15 days for untreated controls. Moreover, injecting mice with SMA-like disease with a human SMN–expressing self-complementary AAV vector — a vector that leads to earlier onset of gene expression compared with standard AAV vectors — led to improved efficacy of gene therapy, including a substantial extension in median survival to 157 days. These data indicate that CNS-directed, AAV-mediated SMN augmentation is highly efficacious in addressing both neuronal and muscular pathologies in a severe mouse model of SMA.

Authors

Marco A. Passini, Jie Bu, Eric M. Roskelley, Amy M. Richards, S. Pablo Sardi, Catherine R. O’Riordan, Katherine W. Klinger, Lamya S. Shihabuddin, Seng H. Cheng

×

Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease
Anne Joutel, … , Pierre Lacombe, Norbert Hubner
Anne Joutel, … , Pierre Lacombe, Norbert Hubner
Published January 11, 2010
Citation Information: J Clin Invest. 2010. https://doi.org/10.1172/JCI39733.
View: Text | PDF

Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease

  • Text
  • PDF
Abstract

Cerebral ischemic small vessel disease (SVD) is the leading cause of vascular dementia and a major contributor to stroke in humans. Dominant mutations in NOTCH3 cause cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a genetic archetype of cerebral ischemic SVD. Progress toward understanding the pathogenesis of this disease and developing effective therapies has been hampered by the lack of a good animal model. Here, we report the development of a mouse model for CADASIL via the introduction of a CADASIL-causing Notch3 point mutation into a large P1-derived artificial chromosome (PAC). In vivo expression of the mutated PAC transgene in the mouse reproduced the endogenous Notch3 expression pattern and main pathological features of CADASIL, including Notch3 extracellular domain aggregates and granular osmiophilic material (GOM) deposits in brain vessels, progressive white matter damage, and reduced cerebral blood flow. Mutant mice displayed attenuated myogenic responses and reduced caliber of brain arteries as well as impaired cerebrovascular autoregulation and functional hyperemia. Further, we identified a substantial reduction of white matter capillary density. These neuropathological changes occurred in the absence of either histologically detectable alterations in cerebral artery structure or blood-brain barrier breakdown. These studies provide in vivo evidence for cerebrovascular dysfunction and microcirculatory failure as key contributors to hypoperfusion and white matter damage in this genetic model of ischemic SVD.

Authors

Anne Joutel, Marie Monet-Leprêtre, Claudia Gosele, Céline Baron-Menguy, Annette Hammes, Sabine Schmidt, Barbara Lemaire-Carrette, Valérie Domenga, Andreas Schedl, Pierre Lacombe, Norbert Hubner

×

TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury
Koichi Obata, … , Makoto Tominaga, Koichi Noguchi
Koichi Obata, … , Makoto Tominaga, Koichi Noguchi
Published January 4, 2010
Citation Information: J Clin Invest. 2010;120(1):394-394. https://doi.org/10.1172/JCI25437C1.
View: Text | PDF | Amended Article

TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury

  • Text
  • PDF
Abstract

Authors

Koichi Obata, Hirokazu Katsura, Toshiyuki Mizushima, Hiroki Yamanaka, Kimiko Kobayashi, Yi Dai, Tetsuo Fukuoka, Atsushi Tokunaga, Makoto Tominaga, Koichi Noguchi

×

NSAIDs prevent, but do not reverse, neuronal cell cycle reentry in a mouse model of Alzheimer disease
Nicholas H. Varvel, … , Bruce T. Lamb, Karl Herrup
Nicholas H. Varvel, … , Bruce T. Lamb, Karl Herrup
Published November 9, 2009
Citation Information: J Clin Invest. 2009. https://doi.org/10.1172/JCI39716.
View: Text | PDF

NSAIDs prevent, but do not reverse, neuronal cell cycle reentry in a mouse model of Alzheimer disease

  • Text
  • PDF
Abstract

Ectopic cell cycle events (CCEs) mark vulnerable neuronal populations in human Alzheimer disease (AD) and are observed early in disease progression. In transgenic mouse models of AD, CCEs are found before the onset of β-amyloid peptide (Aβ) deposition to form senile plaques, a hallmark of AD. Here, we have demonstrated that alterations in brain microglia occur coincidently with the appearance of CCEs in the R1.40 transgenic mouse model of AD. Furthermore, promotion of inflammation with LPS at young ages in R1.40 mice induced the early appearance of neuronal CCEs, whereas treatment with 2 different nonsteroidal antiinflammatory drugs (NSAIDs) blocked neuronal CCEs and alterations in brain microglia without altering amyloid precursor protein (APP) processing and steady-state Aβ levels. In addition, NSAID treatment of older R1.40 animals prevented new neuronal CCEs, although it failed to reverse existing ones. Retrospective human epidemiological studies have identified long-term use of NSAIDs as protective against AD. Prospective clinical trials, however, have failed to demonstrate a similar benefit. Our use of CCEs as an outcome measure offers fresh insight into this discrepancy and provides important information for future clinical trials, as it suggests that NSAID use in human AD may need to be initiated as early as possible to prevent disease progression.

Authors

Nicholas H. Varvel, Kiran Bhaskar, Maria Z. Kounnas, Steven L. Wagner, Yan Yang, Bruce T. Lamb, Karl Herrup

×

Tyrosine and serine phosphorylation of α-synuclein have opposing effects on neurotoxicity and soluble oligomer formation
Li Chen, … , Bradley T. Hyman, Mel B. Feany
Li Chen, … , Bradley T. Hyman, Mel B. Feany
Published October 12, 2009
Citation Information: J Clin Invest. 2009. https://doi.org/10.1172/JCI39088.
View: Text | PDF

Tyrosine and serine phosphorylation of α-synuclein have opposing effects on neurotoxicity and soluble oligomer formation

  • Text
  • PDF
Abstract

Mutations in the neuronal protein α-synuclein cause familial Parkinson disease. Phosphorylation of α-synuclein at serine 129 is prominent in Parkinson disease and influences α-synuclein neurotoxicity. Here we report that α-synuclein is also phosphorylated at tyrosine 125 in transgenic Drosophila expressing wild-type human α-synuclein and that this tyrosine phosphorylation protects from α-synuclein neurotoxicity in a Drosophila model of Parkinson disease. Western blot analysis of fly brain homogenates showed that levels of soluble oligomeric species of α-synuclein were increased by phosphorylation at serine 129 and decreased by tyrosine 125 phosphorylation. Tyrosine 125 phosphorylation diminished during the normal aging process in both humans and flies. Notably, cortical tissue from patients with the Parkinson disease–related synucleinopathy dementia with Lewy bodies showed less phosphorylation at tyrosine 125. Our findings suggest that α-synuclein neurotoxicity in Parkinson disease and related synucleinopathies may result from an imbalance between the detrimental, oligomer-promoting effect of serine 129 phosphorylation and a neuroprotective action of tyrosine 125 phosphorylation that inhibits toxic oligomer formation.

Authors

Li Chen, Magali Periquet, Xu Wang, Alessandro Negro, Pamela J. McLean, Bradley T. Hyman, Mel B. Feany

×

A zebrafish model of tauopathy allows in vivo imaging of neuronal cell death and drug evaluation
Dominik Paquet, … , Bettina Schmid, Christian Haass
Dominik Paquet, … , Bettina Schmid, Christian Haass
Published April 13, 2009
Citation Information: J Clin Invest. 2009. https://doi.org/10.1172/JCI37537.
View: Text | PDF

A zebrafish model of tauopathy allows in vivo imaging of neuronal cell death and drug evaluation

  • Text
  • PDF
Abstract

Our aging society is confronted with a dramatic increase of patients suffering from tauopathies, which include Alzheimer disease and certain frontotemporal dementias. These disorders are characterized by typical neuropathological lesions including hyperphosphorylation and subsequent aggregation of TAU protein and neuronal cell death. Currently, no mechanism-based cures are available. We generated fluorescently labeled TAU transgenic zebrafish, which rapidly recapitulated key pathological features of tauopathies, including phosphorylation and conformational changes of human TAU protein, tangle formation, neuronal and behavioral disturbances, and cell death. Due to their optical transparency and small size, zebrafish larvae are well suited for both in vivo imaging and drug development. TAU-induced neuronal cell death was imaged by time-lapse microscopy in vivo. Furthermore, we used this zebrafish model to identify compounds targeting the TAU kinase glycogen synthase kinase 3β (GSK3β). We identified a newly developed highly active GSK3β inhibitor, AR-534, by rational drug design. AR-534 reduced TAU phosphorylation in TAU transgenic zebrafish. This transgenic zebrafish model may become a valuable tool for further studies of the neuropathology of dementia.

Authors

Dominik Paquet, Ratan Bhat, Astrid Sydow, Eva-Maria Mandelkow, Stefan Berg, Sven Hellberg, Johanna Fälting, Martin Distel, Reinhard W. Köster, Bettina Schmid, Christian Haass

×
  • ← Previous
  • 1
  • 2
  • …
  • 52
  • 53
  • 54
  • …
  • 62
  • 63
  • Next →
DREAM suppression in Huntington’s disease
José Naranjo and colleagues reveal that downregulation of DREAM mediates derepression of ATF6, and this elevation of ATF6 plays an early neuroprotective role in Huntington’s disease…
Published January 11, 2016
Scientific Show StopperNeuroscience

Extra-cerebellar motor symptoms in Angelman’s syndrome
Caroline Bruinsma and colleagues evaluated cerebellar involvement in Angelman’s Syndrome motor deficits…
Published October 20, 2015
Scientific Show StopperNeuroscience

An epigenetic intervention for neurodegenerative diseases
Eva Benito and colleagues demonstrate that SAHA, a histone-deacetylase inhibitor, improves spatial memory and selectively regulates the neuronal epigenome in a mouse model of neurodegeneration…
Published August 17, 2015
Scientific Show StopperNeuroscience

Genetic and environmental interactions in Parkinson’s disease
Alevtina Zharikov and colleagues reveal that interplay between α-synuclein and environmental toxin exposure influences parkinsonian neurodegeneration…
Published June 15, 2015
Scientific Show StopperNeuroscience

TREM2 keeps myelinated axons under wraps
Pietro Poliani, Yaming Wang, and colleagues demonstrate that TREM2 deficiency reduces age-associated expansion of microglia and microglia-dependent remyelination…
Published April 20, 2015
Scientific Show StopperNeuroscience

Synergy among Parkinson’s disease-associated genes
Durga Meka and colleagues demonstrate that crosstalk between parkin and RET maintains mitochondrial integrity and protects dopaminergic neurons…
Published March 30, 2015
Scientific Show StopperNeuroscience

A model of periventricular leukomalacia
Tamar Licht, Talia Dor-Wollman and colleagues demonstrate that specific vulnerability of immature blood vessels surrounding ventricles predisposes to hypoxia-induced periventricular leukomalacia…
Published February 17, 2015
Scientific Show StopperNeuroscience
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts