Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Nephrology

  • 283 Articles
  • 11 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 16
  • 17
  • 18
  • …
  • 28
  • 29
  • Next →
Albumin-associated free fatty acids induce macropinocytosis in podocytes
Jun-Jae Chung, Tobias B. Huber, Markus Gödel, George Jarad, Björn Hartleben, Christopher Kwoh, Alexander Keil, Aleksey Karpitskiy, Jiancheng Hu, Christine J. Huh, Marina Cella, Richard W. Gross, Jeffrey H. Miner, Andrey S. Shaw
Jun-Jae Chung, Tobias B. Huber, Markus Gödel, George Jarad, Björn Hartleben, Christopher Kwoh, Alexander Keil, Aleksey Karpitskiy, Jiancheng Hu, Christine J. Huh, Marina Cella, Richard W. Gross, Jeffrey H. Miner, Andrey S. Shaw
View: Text | PDF

Albumin-associated free fatty acids induce macropinocytosis in podocytes

  • Text
  • PDF
Abstract

Podocytes are specialized epithelial cells in the kidney glomerulus that play important structural and functional roles in maintaining the filtration barrier. Nephrotic syndrome results from a breakdown of the kidney filtration barrier and is associated with proteinuria, hyperlipidemia, and edema. Additionally, podocytes undergo changes in morphology and internalize plasma proteins in response to this disorder. Here, we used fluid-phase tracers in murine models and determined that podocytes actively internalize fluid from the plasma and that the rate of internalization is increased when the filtration barrier is disrupted. In cultured podocytes, the presence of free fatty acids (FFAs) associated with serum albumin stimulated macropinocytosis through a pathway that involves FFA receptors, the Gβ/Gγ complex, and RAC1. Moreover, mice with elevated levels of plasma FFAs as the result of a high-fat diet were more susceptible to Adriamycin-induced proteinuria than were animals on standard chow. Together, these results support a model in which podocytes sense the disruption of the filtration barrier via FFAs bound to albumin and respond by enhancing fluid-phase uptake. The response to FFAs may function in the development of nephrotic syndrome by amplifying the effects of proteinuria.

Authors

Jun-Jae Chung, Tobias B. Huber, Markus Gödel, George Jarad, Björn Hartleben, Christopher Kwoh, Alexander Keil, Aleksey Karpitskiy, Jiancheng Hu, Christine J. Huh, Marina Cella, Richard W. Gross, Jeffrey H. Miner, Andrey S. Shaw

×

Integrated compensatory network is activated in the absence of NCC phosphorylation
P. Richard Grimm, Yoskaly Lazo-Fernandez, Eric Delpire, Susan M. Wall, Susan G. Dorsey, Edward J. Weinman, Richard Coleman, James B. Wade, Paul A. Welling
P. Richard Grimm, Yoskaly Lazo-Fernandez, Eric Delpire, Susan M. Wall, Susan G. Dorsey, Edward J. Weinman, Richard Coleman, James B. Wade, Paul A. Welling
View: Text | PDF

Integrated compensatory network is activated in the absence of NCC phosphorylation

  • Text
  • PDF
Abstract

Thiazide diuretics are used to treat hypertension; however, compensatory processes in the kidney can limit antihypertensive responses to this class of drugs. Here, we evaluated compensatory pathways in SPAK kinase–deficient mice, which are unable to activate the thiazide-sensitive sodium chloride cotransporter NCC (encoded by Slc12a3). Global transcriptional profiling, combined with biochemical, cell biological, and physiological phenotyping, identified the gene expression signature of the response and revealed how it establishes an adaptive physiology. Salt reabsorption pathways were created by the coordinate induction of a multigene transport system, involving solute carriers (encoded by Slc26a4, Slc4a8, and Slc4a9), carbonic anhydrase isoforms, and V-type H+-ATPase subunits in pendrin-positive intercalated cells (PP-ICs) and ENaC subunits in principal cells (PCs). A distal nephron remodeling process and induction of jagged 1/NOTCH signaling, which expands the cortical connecting tubule with PCs and replaces acid-secreting α-ICs with PP-ICs, were partly responsible for the compensation. Salt reabsorption was also activated by induction of an α-ketoglutarate (α-KG) paracrine signaling system. Coordinate regulation of a multigene α-KG synthesis and transport pathway resulted in α-KG secretion into pro-urine, as the α-KG–activated GPCR (Oxgr1) increased on the PP-IC apical surface, allowing paracrine delivery of α-KG to stimulate salt transport. Identification of the integrated compensatory NaCl reabsorption mechanisms provides insight into thiazide diuretic efficacy.

Authors

P. Richard Grimm, Yoskaly Lazo-Fernandez, Eric Delpire, Susan M. Wall, Susan G. Dorsey, Edward J. Weinman, Richard Coleman, James B. Wade, Paul A. Welling

×

Genomic imbalances in pediatric patients with chronic kidney disease
Miguel Verbitsky, Simone Sanna-Cherchi, David A. Fasel, Brynn Levy, Krzysztof Kiryluk, Matthias Wuttke, Alison G. Abraham, Frederick Kaskel, Anna Köttgen, Bradley A. Warady, Susan L. Furth, Craig S. Wong, Ali G. Gharavi
Miguel Verbitsky, Simone Sanna-Cherchi, David A. Fasel, Brynn Levy, Krzysztof Kiryluk, Matthias Wuttke, Alison G. Abraham, Frederick Kaskel, Anna Köttgen, Bradley A. Warady, Susan L. Furth, Craig S. Wong, Ali G. Gharavi
View: Text | PDF

Genomic imbalances in pediatric patients with chronic kidney disease

  • Text
  • PDF
Abstract

BACKGROUND. There is frequent uncertainty in the identification of specific etiologies of chronic kidney disease (CKD) in children. Recent studies indicate that chromosomal microarrays can identify rare genomic imbalances that can clarify the etiology of neurodevelopmental and cardiac disorders in children; however, the contribution of unsuspected genomic imbalance to the incidence of pediatric CKD is unknown.

METHODS. We performed chromosomal microarrays to detect genomic imbalances in children enrolled in the Chronic Kidney Disease in Children (CKiD) prospective cohort study, a longitudinal prospective multiethnic observational study of North American children with mild to moderate CKD. Patients with clinically detectable syndromic disease were excluded from evaluation. We compared 419 unrelated children enrolled in CKiD to multiethnic cohorts of 21,575 children and adults that had undergone microarray genotyping for studies unrelated to CKD.

RESULTS. We identified diagnostic copy number disorders in 31 children with CKD (7.4% of the cohort). We detected 10 known pathogenic genomic disorders, including the 17q12 deletion HNF1 homeobox B (HNF1B) and triple X syndromes in 19 of 419 unrelated CKiD cases as compared with 98 of 21,575 control individuals (OR 10.8, P = 6.1 × 10–20). In an additional 12 CKiD cases, we identified 12 likely pathogenic genomic imbalances that would be considered reportable in a clinical setting. These genomic imbalances were evenly distributed among patients diagnosed with congenital and noncongenital forms of CKD. In the vast majority of these cases, the genomic lesion was unsuspected based on the clinical assessment and either reclassified the disease or provided information that might have triggered additional clinical care, such as evaluation for metabolic or neuropsychiatric disease.

CONCLUSION. A substantial proportion of children with CKD have an unsuspected genomic imbalance, suggesting genomic disorders as a risk factor for common forms of pediatric nephropathy. Detection of pathogenic imbalances has practical implications for personalized diagnosis and health monitoring in this population.

TRIAL REGISTRATION. ClinicalTrials.gov NCT00327860.

FUNDING. This work was supported by the NIH, the National Institutes of Diabetes and Digestive and Kidney Diseases (NIDDK), the National Institute of Child Health and Human Development, and the National Heart, Lung, and Blood Institute.

Authors

Miguel Verbitsky, Simone Sanna-Cherchi, David A. Fasel, Brynn Levy, Krzysztof Kiryluk, Matthias Wuttke, Alison G. Abraham, Frederick Kaskel, Anna Köttgen, Bradley A. Warady, Susan L. Furth, Craig S. Wong, Ali G. Gharavi

×

Sec63 and Xbp1 regulate IRE1α activity and polycystic disease severity
Sorin V. Fedeles, Jae-Seon So, Amol Shrikhande, Seung Hun Lee, Anna-Rachel Gallagher, Christina E. Barkauskas, Stefan Somlo, Ann-Hwee Lee
Sorin V. Fedeles, Jae-Seon So, Amol Shrikhande, Seung Hun Lee, Anna-Rachel Gallagher, Christina E. Barkauskas, Stefan Somlo, Ann-Hwee Lee
View: Text | PDF

Sec63 and Xbp1 regulate IRE1α activity and polycystic disease severity

  • Text
  • PDF
Abstract

The HSP40 cochaperone SEC63 is associated with the SEC61 translocon complex in the ER. Mutations in the gene encoding SEC63 cause polycystic liver disease in humans; however, it is not clear how altered SEC63 influences disease manifestations. In mice, loss of SEC63 induces cyst formation both in liver and kidney as the result of reduced polycystin-1 (PC1). Here we report that inactivation of SEC63 induces an unfolded protein response (UPR) pathway that is protective against cyst formation. Specifically, using murine genetic models, we determined that SEC63 deficiency selectively activates the IRE1α-XBP1 branch of UPR and that SEC63 exists in a complex with PC1. Concomitant inactivation of both SEC63 and XBP1 exacerbated the polycystic kidney phenotype in mice by markedly suppressing cleavage at the G protein–coupled receptor proteolysis site (GPS) in PC1. Enforced expression of spliced XBP1 (XBP1s) enhanced GPS cleavage of PC1 in SEC63-deficient cells, and XBP1 overexpression in vivo ameliorated cystic disease in a murine model with reduced PC1 function that is unrelated to SEC63 inactivation. Collectively, the findings show that SEC63 function regulates IRE1α/XBP1 activation, SEC63 and XBP1 are required for GPS cleavage and maturation of PC1, and activation of XBP1 can protect against polycystic disease in the setting of impaired biogenesis of PC1.

Authors

Sorin V. Fedeles, Jae-Seon So, Amol Shrikhande, Seung Hun Lee, Anna-Rachel Gallagher, Christina E. Barkauskas, Stefan Somlo, Ann-Hwee Lee

×

Gq signaling causes glomerular injury by activating TRPC6
Liming Wang, Grant Jirka, Paul B. Rosenberg, Anne F. Buckley, Jose A. Gomez, Timothy A. Fields, Michelle P. Winn, Robert F. Spurney
Liming Wang, Grant Jirka, Paul B. Rosenberg, Anne F. Buckley, Jose A. Gomez, Timothy A. Fields, Michelle P. Winn, Robert F. Spurney
View: Text | PDF

Gq signaling causes glomerular injury by activating TRPC6

  • Text
  • PDF
Abstract

Familial forms of focal segmental glomerulosclerosis (FSGS) have been linked to gain-of-function mutations in the gene encoding the transient receptor potential channel C6 (TRPC6). GPCRs coupled to Gq signaling activate TRPC6, suggesting that Gq-dependent TRPC6 activation underlies glomerular diseases. Here, we developed a murine model in which a constitutively active Gq α subunit (GqQ209L, referred to herein as GqQ>L) is specifically expressed in podocytes and examined the effects of this mutation in response to puromycin aminonucleoside (PAN) nephrosis. We found that compared with control animals, animals expressing GqQ>L exhibited robust albuminuria, structural features of FSGS, and reduced numbers of glomerular podocytes. Gq activation stimulated calcineurin (CN) activity, resulting in CN-dependent upregulation of TRPC6 in murine kidneys. Deletion of TRPC6 in GqQ>L-expressing mice prevented FSGS development and inhibited both tubular damage and podocyte loss induced by PAN nephrosis. Similarly, administration of the CN inhibitor FK506 reduced proteinuria and tubular injury but had more modest effects on glomerular pathology and podocyte numbers in animals with constitutive Gq activation. Moreover, these Gq-dependent effects on podocyte injury were generalizable to diabetic kidney disease, as expression of GqQ>L promoted albuminuria, mesangial expansion, and increased glomerular basement membrane width in diabetic mice. Together, these results suggest that targeting Gq/TRPC6 signaling may have therapeutic benefits for the treatment of glomerular diseases.

Authors

Liming Wang, Grant Jirka, Paul B. Rosenberg, Anne F. Buckley, Jose A. Gomez, Timothy A. Fields, Michelle P. Winn, Robert F. Spurney

×

KIM-1–mediated phagocytosis reduces acute injury to the kidney
Li Yang, Craig R. Brooks, Sheng Xiao, Venkata Sabbisetti, Melissa Y. Yeung, Li-Li Hsiao, Takaharu Ichimura, Vijay Kuchroo, Joseph V. Bonventre
Li Yang, Craig R. Brooks, Sheng Xiao, Venkata Sabbisetti, Melissa Y. Yeung, Li-Li Hsiao, Takaharu Ichimura, Vijay Kuchroo, Joseph V. Bonventre
View: Text | PDF

KIM-1–mediated phagocytosis reduces acute injury to the kidney

  • Text
  • PDF
Abstract

Kidney injury molecule 1 (KIM-1, also known as TIM-1) is markedly upregulated in the proximal tubule after injury and is maladaptive when chronically expressed. Here, we determined that early in the injury process, however, KIM-1 expression is antiinflammatory due to its mediation of phagocytic processes in tubule cells. Using various models of acute kidney injury (AKI) and mice expressing mutant forms of KIM-1, we demonstrated a mucin domain–dependent protective effect of epithelial KIM-1 expression that involves downregulation of innate immunity. Deletion of the mucin domain markedly impaired KIM-1–mediated phagocytic function, resulting in increased proinflammatory cytokine production, decreased antiinflammatory growth factor secretion by proximal epithelial cells, and a subsequent increase in tissue macrophages. Mice expressing KIM-1Δmucin had greater functional impairment, inflammatory responses, and mortality in response to ischemia- and cisplatin-induced AKI. Compared with primary renal proximal tubule cells isolated from KIM-1Δmucin mice, those from WT mice had reduced proinflammatory cytokine secretion and impaired macrophage activation. The antiinflammatory effect of KIM-1 expression was due to the interaction of KIM-1 with p85 and subsequent PI3K-dependent downmodulation of NF-κB. Hence, KIM-1–mediated epithelial cell phagocytosis of apoptotic cells protects the kidney after acute injury by downregulating innate immunity and inflammation.

Authors

Li Yang, Craig R. Brooks, Sheng Xiao, Venkata Sabbisetti, Melissa Y. Yeung, Li-Li Hsiao, Takaharu Ichimura, Vijay Kuchroo, Joseph V. Bonventre

×

Lymphocyte adaptor protein LNK deficiency exacerbates hypertension and end-organ inflammation
Mohamed A. Saleh, William G. McMaster, Jing Wu, Allison E. Norlander, Samuel A. Funt, Salim R. Thabet, Annet Kirabo, Liang Xiao, Wei Chen, Hana A. Itani, Danielle Michell, Tianxiao Huan, Yahua Zhang, Satoshi Takaki, Jens Titze, Daniel Levy, David G. Harrison, Meena S. Madhur
Mohamed A. Saleh, William G. McMaster, Jing Wu, Allison E. Norlander, Samuel A. Funt, Salim R. Thabet, Annet Kirabo, Liang Xiao, Wei Chen, Hana A. Itani, Danielle Michell, Tianxiao Huan, Yahua Zhang, Satoshi Takaki, Jens Titze, Daniel Levy, David G. Harrison, Meena S. Madhur
View: Text | PDF

Lymphocyte adaptor protein LNK deficiency exacerbates hypertension and end-organ inflammation

  • Text
  • PDF
Abstract

The lymphocyte adaptor protein LNK (also known as SH2B3) is primarily expressed in hematopoietic and endothelial cells, where it functions as a negative regulator of cytokine signaling and cell proliferation. Single-nucleotide polymorphisms in the gene encoding LNK are associated with autoimmune and cardiovascular disorders; however, it is not known how LNK contributes to hypertension. Here, we determined that loss of LNK exacerbates angiotensin II–induced (Ang II–induced) hypertension and the associated renal and vascular dysfunction. At baseline, kidneys from Lnk–/– mice exhibited greater levels of inflammation, oxidative stress, and glomerular injury compared with WT animals, and these parameters were further exacerbated by Ang II infusion. Aortas from Lnk–/– mice exhibited enhanced inflammation, reduced nitric oxide levels, and impaired endothelial-dependent relaxation. Bone marrow transplantation studies demonstrated that loss of LNK in hematopoietic cells is primarily responsible for the observed renal and vascular inflammation and predisposition to hypertension. Ang II infusion increased IFN-γ–producing CD8+ T cells in the spleen and kidneys of Lnk–/– mice compared with WT mice. Moreover, IFN-γ deficiency resulted in blunted hypertension in response to Ang II infusion. Together, these results suggest that LNK is a potential therapeutic target for hypertension and its associated renal and vascular sequela.

Authors

Mohamed A. Saleh, William G. McMaster, Jing Wu, Allison E. Norlander, Samuel A. Funt, Salim R. Thabet, Annet Kirabo, Liang Xiao, Wei Chen, Hana A. Itani, Danielle Michell, Tianxiao Huan, Yahua Zhang, Satoshi Takaki, Jens Titze, Daniel Levy, David G. Harrison, Meena S. Madhur

×

Sirtuin 3–dependent mitochondrial dynamic improvements protect against acute kidney injury
Marina Morigi, Luca Perico, Cinzia Rota, Lorena Longaretti, Sara Conti, Daniela Rottoli, Rubina Novelli, Giuseppe Remuzzi, Ariela Benigni
Marina Morigi, Luca Perico, Cinzia Rota, Lorena Longaretti, Sara Conti, Daniela Rottoli, Rubina Novelli, Giuseppe Remuzzi, Ariela Benigni
View: Text | PDF

Sirtuin 3–dependent mitochondrial dynamic improvements protect against acute kidney injury

  • Text
  • PDF
Abstract

Acute kidney injury (AKI) is a public health concern with an annual mortality rate that exceeds those of breast and prostate cancer, heart failure, and diabetes combined. Oxidative stress and mitochondrial damage are drivers of AKI-associated pathology; however, the pathways that mediate these events are poorly defined. Here, using a murine cisplatin-induced AKI model, we determined that both oxidative stress and mitochondrial damage are associated with reduced levels of renal sirtuin 3 (SIRT3). Treatment with the AMPK agonist AICAR or the antioxidant agent acetyl-l-carnitine (ALCAR) restored SIRT3 expression and activity, improved renal function, and decreased tubular injury in WT animals, but had no effect in Sirt3–/– mice. Moreover, Sirt3-deficient mice given cisplatin experienced more severe AKI than WT animals and died, and neither AICAR nor ALCAR treatment prevented death in Sirt3–/– AKI mice. In cultured human tubular cells, cisplatin reduced SIRT3, resulting in mitochondrial fragmentation, while restoration of SIRT3 with AICAR and ALCAR improved cisplatin-induced mitochondrial dysfunction. Together, our results indicate that SIRT3 is protective against AKI and suggest that enhancing SIRT3 to improve mitochondrial dynamics has potential as a strategy for improving outcomes of renal injury.

Authors

Marina Morigi, Luca Perico, Cinzia Rota, Lorena Longaretti, Sara Conti, Daniela Rottoli, Rubina Novelli, Giuseppe Remuzzi, Ariela Benigni

×

Intronic locus determines SHROOM3 expression and potentiates renal allograft fibrosis
Madhav C. Menon, Peter Y. Chuang, Zhengzhe Li, Chengguo Wei, Weijia Zhang, Yi Luan, Zhengzi Yi, Huabao Xiong, Christopher Woytovich, Ilana Greene, Jessica Overbey, Ivy Rosales, Emilia Bagiella, Rong Chen, Meng Ma, Li Li, Wei Ding, Arjang Djamali, Millagros Saminego, Philip J. O’Connell, Lorenzo Gallon, Robert Colvin, Bernd Schroppel, John Cijiang He, Barbara Murphy
Madhav C. Menon, Peter Y. Chuang, Zhengzhe Li, Chengguo Wei, Weijia Zhang, Yi Luan, Zhengzi Yi, Huabao Xiong, Christopher Woytovich, Ilana Greene, Jessica Overbey, Ivy Rosales, Emilia Bagiella, Rong Chen, Meng Ma, Li Li, Wei Ding, Arjang Djamali, Millagros Saminego, Philip J. O’Connell, Lorenzo Gallon, Robert Colvin, Bernd Schroppel, John Cijiang He, Barbara Murphy
View: Text | PDF

Intronic locus determines SHROOM3 expression and potentiates renal allograft fibrosis

  • Text
  • PDF
Abstract

Fibrosis underlies the loss of renal function in patients with chronic kidney disease (CKD) and in kidney transplant recipients with chronic allograft nephropathy (CAN). Here, we studied the effect of an intronic SNP in SHROOM3, which has previously been linked to CKD, on the development of CAN in a prospective cohort of renal allograft recipients. The presence of the rs17319721 allele at the SHROOM3 locus in the donor correlated with increased SHROOM3 expression in the allograft. In vitro, we determined that the sequence containing the risk allele at rs17319721 is a transcription factor 7–like 2–dependent (TCF7L2-dependent) enhancer element that functions to increase SHROOM3 transcription. In renal tubular cells, TGF-β1 administration upregulated SHROOM3 expression in a β-catenin/TCF7L2–mediated manner, while SHROOM3 in turn facilitated canonical TGF-β1 signaling and increased α1 collagen (COL1A1) expression. Inducible and tubular cell–specific knockdown of Shroom3 markedly abrogated interstitial fibrosis in mice with unilateral ureteric obstruction. Moreover, SHROOM3 expression in allografts at 3 months after transplant and the presence of the SHROOM3 risk allele in the donor correlated with increased allograft fibrosis and with reduced estimated glomerular filtration rate at 12 months after transplant. Our findings suggest that rs17319721 functions as a cis-acting expression quantitative trait locus of SHROOM3 that facilitates TGF-β1 signaling and contributes to allograft injury.

Authors

Madhav C. Menon, Peter Y. Chuang, Zhengzhe Li, Chengguo Wei, Weijia Zhang, Yi Luan, Zhengzi Yi, Huabao Xiong, Christopher Woytovich, Ilana Greene, Jessica Overbey, Ivy Rosales, Emilia Bagiella, Rong Chen, Meng Ma, Li Li, Wei Ding, Arjang Djamali, Millagros Saminego, Philip J. O’Connell, Lorenzo Gallon, Robert Colvin, Bernd Schroppel, John Cijiang He, Barbara Murphy

×

mTORC2 regulates renal tubule sodium uptake by promoting ENaC activity
Catherine E. Gleason, Gustavo Frindt, Chih-Jen Cheng, Michael Ng, Atif Kidwai, Florian Lang, Michel Baum, Lawrence G. Palmer, David Pearce
Catherine E. Gleason, Gustavo Frindt, Chih-Jen Cheng, Michael Ng, Atif Kidwai, Florian Lang, Michel Baum, Lawrence G. Palmer, David Pearce
View: Text | PDF

mTORC2 regulates renal tubule sodium uptake by promoting ENaC activity

  • Text
  • PDF
Abstract

The epithelial Na+ channel (ENaC) is essential for Na+ homeostasis, and dysregulation of this channel underlies many forms of hypertension. Recent studies suggest that mTOR regulates phosphorylation and activation of serum/glucocorticoid regulated kinase 1 (SGK1), which is known to inhibit ENaC internalization and degradation; however, it is not clear whether mTOR contributes to the regulation of renal tubule ion transport. Here, we evaluated the effect of selective mTOR inhibitors on kidney tubule Na+ and K+ transport in WT and Sgk1–/– mice, as well as in isolated collecting tubules. We found that 2 structurally distinct competitive inhibitors (PP242 and AZD8055), both of which prevent all mTOR-dependent phosphorylation, including that of SGK1, caused substantial natriuresis, but not kaliuresis, in WT mice, which indicates that mTOR preferentially influences ENaC function. PP242 also substantially inhibited Na+ currents in isolated perfused cortical collecting tubules. Accordingly, patch clamp studies on cortical tubule apical membranes revealed that mTOR inhibition markedly reduces ENaC activity, but does not alter activity of K+ inwardly rectifying channels (ROMK channels). Together, these results demonstrate that mTOR regulates kidney tubule ion handling and suggest that mTOR regulates Na+ homeostasis through SGK1-dependent modulation of ENaC activity.

Authors

Catherine E. Gleason, Gustavo Frindt, Chih-Jen Cheng, Michael Ng, Atif Kidwai, Florian Lang, Michel Baum, Lawrence G. Palmer, David Pearce

×
  • ← Previous
  • 1
  • 2
  • …
  • 16
  • 17
  • 18
  • …
  • 28
  • 29
  • Next →
  • ← Previous
  • 1
  • 2
  • Next →
Local TNF mediates free cholesterol–dependent podocyte injury
In this episode, Alessia Fornoni reveals that TNF promotes free cholesterol–dependent podocyte apoptosis via an NFATc1/ ABCA1-dependent mechanism.
Published August 2, 2016
Video AbstractsNephrology

Anti-THSD7A is a bona fide culprit in membranous nephropathy
Nicola M. Tomas, Elion Hoxha, and colleagues provide evidence that anti-THSD7A antibodies promote the development of membranous nephropathy...
Published May 23, 2016
Scientific Show StopperNephrology

Identifying sporadic focal segmental glomerulosclerosis-associated genes
Haiyang Yu, Mykyta Artomov, Sebastian Brähler and colleagues demonstrate the genetic contribution to the development of focal segmental glomerulosclerosis...
Published February 22, 2016
Scientific Show StopperNephrology

DNA replication stress linked to ciliopathies
Gisela Slaats and colleagues reveal that ciliopathy syndrome-associated mutations in CEP290 result in replication errors and DNA damage…
Published August 24, 2015
Scientific Show StopperNephrology

Nephrotic syndrome-associated mutations
Heon Yung Gee, Fujian Zhang, and colleagues reveal that mutations in KANK family genes underlie podocyte dysfunction and are associated with nephrotic syndrome…
Published May 11, 2015
Scientific Show StopperNephrology

Podocyte macropinocytosis
Jun-Jae Chung, Tobias B. Huber, Markus Gödel, and colleagues show that albumin-bound free fatty acids increase fluid-phase uptake in podocytes…
Published April 27, 2015
Scientific Show StopperNephrology

A network of diuretic resistance
Richard Grimm and colleagues use a systems biology approach to uncover mechanisms of renal compensation that lead to diuretic resistance…
Published April 20, 2015
Scientific Show StopperNephrology

KIM-1 protects the kidney after injury
Li Yang, Craig Brooks, and colleagues at Harvard Medical School demonstrate that KIM-1-mediated phagocytosis of apoptotic cells dampens inflammatory responses after kidney injury.. .
Published March 9, 2015
Scientific Show StopperNephrology

Protection against acute kidney injury
Marina Morigi and colleagues demonstrate that sirtuin 3 expression improves survival in a murine model of acute kidney injury...
Published January 20, 2015
Scientific Show StopperNephrology

Helping polycysin-1 reach the surface
Vladimir Gainullin and colleagues reveal that polycystin-2 is required for maturation and surface localization of polycystin-1…
Published January 9, 2015
Scientific Show StopperNephrology
  • ← Previous
  • 1
  • 2
  • Next →
Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts