Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Immunology

  • 1,338 Articles
  • 3 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 96
  • 97
  • 98
  • …
  • 133
  • 134
  • Next →
MyD88 is critically involved in immune tolerance breakdown at environmental interfaces of Foxp3-deficient mice
Magali Noval Rivas, … , Greg Lawson, Talal A. Chatila
Magali Noval Rivas, … , Greg Lawson, Talal A. Chatila
Published April 2, 2012
Citation Information: J Clin Invest. 2012. https://doi.org/10.1172/JCI40591.
View: Text | PDF

MyD88 is critically involved in immune tolerance breakdown at environmental interfaces of Foxp3-deficient mice

  • Text
  • PDF
Abstract

Tregs expressing the transcription factor Foxp3 suppress self-reactive T cells, prevent autoimmunity, and help contain immune responses to foreign antigens, thereby limiting the potential for inadvertent tissue damage. Mutations in the FOXP3 gene result in Treg deficiency in mice and humans, which leads to the development of a multisystem autoimmune inflammatory disease. The contribution of dysregulated innate immune responses to the pathogenesis of Foxp3 deficiency disease is unknown. In this study, we examined the role of microbial signals in the pathogenesis of Foxp3 deficiency disease by studying Foxp3 mutant mice that had concurrent deficiencies in TLR signaling pathways. Global deficiency of the common TLR adaptor MyD88 offered partial protection from Foxp3 deficiency disease. Specifically, it protected from disease at the environmental interfaces of the skin, lungs, and gut. In contrast, systemic disease, in the form of unrestrained lymphoproliferation, continued unabated. The effect of MyD88 deficiency at environmental interfaces involved the disruption of chemokine gradients that recruit effector T cells and DCs, resulting in their entrapment in secondary lymphoid tissues. These results suggests that Tregs have a key role in maintaining tolerance at host-microbial interfaces by restraining tonic MyD88-dependent proinflammatory signals. Moreover, microbial factors may play a substantial role in the pathogenesis of human autoimmune disease resulting from Treg deficiency.

Authors

Magali Noval Rivas, Yi T. Koh, Andrew Chen, Annie Nguyen, Young Ho Lee, Greg Lawson, Talal A. Chatila

×

CD14 and NFAT mediate lipopolysaccharide-induced skin edema formation in mice
Ivan Zanoni, … , Roberta Marzi, Francesca Granucci
Ivan Zanoni, … , Roberta Marzi, Francesca Granucci
Published April 2, 2012
Citation Information: J Clin Invest. 2012. https://doi.org/10.1172/JCI60688.
View: Text | PDF

CD14 and NFAT mediate lipopolysaccharide-induced skin edema formation in mice

  • Text
  • PDF
Abstract

Inflammation is a multistep process triggered when innate immune cells — for example, DCs — sense a pathogen or injured cell or tissue. Edema formation is one of the first steps in the inflammatory response; it is fundamental for the local accumulation of inflammatory mediators. Injection of LPS into the skin provides a model for studying the mechanisms of inflammation and edema formation. While it is known that innate immune recognition of LPS leads to activation of numerous transcriptional activators, including nuclear factor of activated T cells (NFAT) isoforms, the molecular pathways that lead to edema formation have not been determined. As PGE2 regulates many proinflammatory processes, including swelling and pain, and it is induced by LPS, we hypothesized that PGE2 mediates the local generation of edema following LPS exposure. Here, we show that tissue-resident DCs are the main source of PGE2 and the main controllers of tissue edema formation in a mouse model of LPS-induced inflammation. LPS exposure induced expression of microsomal PGE synthase-1 (mPGES-1), a key enzyme in PGE2 biosynthesis. mPGES-1 activation, PGE2 production, and edema formation required CD14 (a component of the LPS receptor) and NFAT. Therefore, tissue edema formation induced by LPS is DC and CD14/NFAT dependent. Moreover, DCs can regulate free antigen arrival at the draining lymph nodes by controlling edema formation and interstitial fluid pressure in the presence of LPS. We therefore suggest that the CD14/NFAT/mPGES-1 pathway represents a possible target for antiinflammatory therapies.

Authors

Ivan Zanoni, Renato Ostuni, Simona Barresi, Marco Di Gioia, Achille Broggi, Barbara Costa, Roberta Marzi, Francesca Granucci

×

Rituximab induces sustained reduction of pathogenic B cells in patients with peripheral nervous system autoimmunity
Michael A. Maurer, … , Marinos Dalakas, Jan D. Lünemann
Michael A. Maurer, … , Marinos Dalakas, Jan D. Lünemann
Published March 19, 2012
Citation Information: J Clin Invest. 2012. https://doi.org/10.1172/JCI58743.
View: Text | PDF

Rituximab induces sustained reduction of pathogenic B cells in patients with peripheral nervous system autoimmunity

  • Text
  • PDF
Abstract

The B cell–depleting IgG1 monoclonal antibody rituximab can persistently suppress disease progression in some patients with autoimmune diseases. However, the mechanism underlying these long-term beneficial effects has remained unclear. Here, we evaluated Ig gene usage in patients with anti–myelin-associated glycoprotein (anti-MAG) neuropathy, an autoimmune disease of the peripheral nervous system that is mediated by IgM autoantibodies binding to MAG antigen. Patients with anti-MAG neuropathy showed substantial clonal expansions of blood IgM memory B cells that recognized MAG antigen. The group of patients showing no clinical improvement after rituximab therapy were distinguished from clinical responders by a higher load of clonal IgM memory B cell expansions before and after therapy, by persistence of clonal expansions despite efficient peripheral B cell depletion, and by a lack of substantial changes in somatic hypermutation frequencies of IgM memory B cells. We infer from these data that the effectiveness of rituximab therapy depends on efficient depletion of noncirculating B cells and is associated with qualitative immunological changes that indicate reconfiguration of B cell memory through sustained reduction of autoreactive clonal expansions. These findings support the continued development of B cell–depleting therapies for autoimmune diseases.

Authors

Michael A. Maurer, Goran Rakocevic, Carol S. Leung, Isaak Quast, Martin Lukačišin, Norbert Goebels, Christian Münz, Hedda Wardemann, Marinos Dalakas, Jan D. Lünemann

×

The sphingosine-1-phosphate transporter Spns2 expressed on endothelial cells regulates lymphocyte trafficking in mice
Shigetomo Fukuhara, … , Masaru Ishii, Naoki Mochizuki
Shigetomo Fukuhara, … , Masaru Ishii, Naoki Mochizuki
Published March 12, 2012
Citation Information: J Clin Invest. 2012. https://doi.org/10.1172/JCI60746.
View: Text | PDF

The sphingosine-1-phosphate transporter Spns2 expressed on endothelial cells regulates lymphocyte trafficking in mice

  • Text
  • PDF
Abstract

The bioactive lysophospholipid mediator sphingosine-1-phosphate (S1P) promotes the egress of newly formed T cells from the thymus and the release of immature B cells from the bone marrow. It has remained unclear, however, where and how S1P is released. Here, we show that in mice, the S1P transporter spinster homolog 2 (Spns2) is responsible for the egress of mature T cells and immature B cells from the thymus and bone marrow, respectively. Global Spns2-KO mice exhibited marked accumulation of mature T cells in thymi and decreased numbers of peripheral T cells in blood and secondary lymphoid organs. Mature recirculating B cells were reduced in frequency in the bone marrow as well as in blood and secondary lymphoid organs. Bone marrow reconstitution studies revealed that Spns2 was not involved in S1P release from blood cells and suggested a role for Spns2 in other cells. Consistent with these data, endothelia-specific deletion of Spns2 resulted in defects of lymphocyte egress similar to those observed in the global Spns2-KO mice. These data suggest that Spns2 functions in ECs to establish the S1P gradient required for T and B cells to egress from their respective primary lymphoid organs. Furthermore, Spns2 could be a therapeutic target for a broad array of inflammatory and autoimmune diseases.

Authors

Shigetomo Fukuhara, Szandor Simmons, Shunsuke Kawamura, Asuka Inoue, Yasuko Orba, Takeshi Tokudome, Yuji Sunden, Yuji Arai, Kazumasa Moriwaki, Junji Ishida, Akiyoshi Uemura, Hiroshi Kiyonari, Takaya Abe, Akiyoshi Fukamizu, Masanori Hirashima, Hirofumi Sawa, Junken Aoki, Masaru Ishii, Naoki Mochizuki

×

Evidence for a stepwise program of extrathymic T cell development within the human tonsil
Susan McClory, … , Gerard Nuovo, Michael A. Caligiuri
Susan McClory, … , Gerard Nuovo, Michael A. Caligiuri
Published March 1, 2012
Citation Information: J Clin Invest. 2012. https://doi.org/10.1172/JCI46125.
View: Text | PDF

Evidence for a stepwise program of extrathymic T cell development within the human tonsil

  • Text
  • PDF
Abstract

The development of a broad repertoire of T cells, which is essential for effective immune function, occurs in the thymus. Although some data suggest that T cell development can occur extrathymically, many researchers remain skeptical that extrathymic T cell development has an important role in generating the T cell repertoire in healthy individuals. However, it may be important in the setting of poor thymic function or congenital deficit and in the context of autoimmunity, cancer, or regenerative medicine. Here, we report evidence that a stepwise program of T cell development occurs within the human tonsil. We identified 5 tonsillar T cell developmental intermediates: (a) CD34+CD38dimLin– cells, which resemble multipotent progenitors in the bone marrow and thymus; (b) more mature CD34+CD38brightLin– cells; (c) CD34+CD1a+CD11c– cells, which resemble committed T cell lineage precursors in the thymus; (d) CD34–CD1a+CD3–CD11c– cells, which resemble CD4+CD8+ double-positive T cells in the thymus; and (e) CD34–CD1a+CD3+CD11c– cells. The phenotype of each subset closely resembled that of its thymic counterpart. The last 4 populations expressed RAG1 and PTCRA, genes required for TCR rearrangement, and all 5 subsets were capable of ex vivo T cell differentiation. TdT+ cells found within the tonsillar fibrous scaffold expressed CD34 and/or CD1a, indicating that this distinct anatomic region contributes to pre–T cell development, as does the subcapsular region of the thymus. Thus, we provide evidence of a role for the human tonsil in a comprehensive program of extrathymic T cell development.

Authors

Susan McClory, Tiffany Hughes, Aharon G. Freud, Edward L. Briercheck, Chelsea Martin, Anthony J. Trimboli, Jianhua Yu, Xiaoli Zhang, Gustavo Leone, Gerard Nuovo, Michael A. Caligiuri

×

Protective antifungal memory CD8+ T cells are maintained in the absence of CD4+ T cell help and cognate antigen in mice
Som G. Nanjappa, … , Thomas Sullivan, Bruce Klein
Som G. Nanjappa, … , Thomas Sullivan, Bruce Klein
Published February 22, 2012
Citation Information: J Clin Invest. 2012. https://doi.org/10.1172/JCI58762.
View: Text | PDF

Protective antifungal memory CD8+ T cells are maintained in the absence of CD4+ T cell help and cognate antigen in mice

  • Text
  • PDF
Abstract

Individuals who are immunocompromised, including AIDS patients with few CD4+ T cells, are at increased risk for opportunistic fungal infections. The incidence of such infections is increasing worldwide, meaning that the need for antifungal vaccines is increasing. Although CD4+ T cells play a dominant role in resistance to many pathogenic fungal infections, we have previously shown that vaccination can induce protective antifungal CD8+ T cell immunity in the absence of CD4+ T cells. However, it has not been determined whether vaccine-induced antifungal CD8+ T cell memory can be maintained in the absence of CD4+ T cell help. Here, we have shown in a mouse model of vaccination against blastomycosis that antifungal memory CD8+ T cells are maintained in the absence of CD4+ T cells without loss of numbers or function for at least 6 months and that the cells protect against infection. Using a system that enabled us to induce and track antigen-specific, antifungal CD8+ T cells, we found that such cells were maintained for at least 5 months upon transfer into naive mice lacking both CD4+ T cells and persistent fungal antigen. Additionally, fungal vaccination induced a profile of transcription factors functionally linked with persistent memory in CD8+ T cells. Thus, unlike bacteria and viruses, fungi elicit long-term CD8+ T cell memory that is maintained without CD4+ T cell help or persistent antigen. This has implications for the development of novel antifungal vaccine strategies effective in immunocompromised patients.

Authors

Som G. Nanjappa, Erika Heninger, Marcel Wüthrich, Thomas Sullivan, Bruce Klein

×

Divergent requirement for Gαs and cAMP in the differentiation and inflammatory profile of distinct mouse Th subsets
Xiangli Li, … , Paul A. Insel, Eyal Raz
Xiangli Li, … , Paul A. Insel, Eyal Raz
Published February 13, 2012
Citation Information: J Clin Invest. 2012. https://doi.org/10.1172/JCI59097.
View: Text | PDF

Divergent requirement for Gαs and cAMP in the differentiation and inflammatory profile of distinct mouse Th subsets

  • Text
  • PDF
Abstract

cAMP, the intracellular signaling molecule produced in response to GPCR signaling, has long been recognized as an immunosuppressive agent that inhibits T cell receptor activation and T cell function. However, recent studies show that cAMP also promotes T cell–mediated immunity. Central to cAMP production downstream of GPCR activation is the trimeric G protein Gs. In order to reconcile the reports of divergent effects of cAMP in T cells and to define the direct effect of cAMP in T cells, we engineered mice in which the stimulatory Gα subunit of Gs (Gαs) could be deleted in T cells using CD4-Cre (GnasΔCD4). GnasΔCD4 CD4+ T cells had reduced cAMP accumulation and Ca2+ influx. In vitro and in vivo, GnasΔCD4 CD4+ T cells displayed impaired differentiation to specific Th subsets: Th17 and Th1 cells were reduced or absent, but Th2 and regulatory T cells were unaffected. Furthermore, GnasΔCD4 CD4+ T cells failed to provoke colitis in an adoptive transfer model, indicating reduced inflammatory function. Restoration of cAMP levels rescued the impaired phenotype of GnasΔCD4 CD4+ T cells, reinstated the PKA-dependent influx of Ca2+, and enhanced the ability of these cells to induce colitis. Our findings thus define an important role for cAMP in the differentiation of Th subsets and their subsequent inflammatory responses, and provide evidence that altering cAMP levels in CD4+ T cells could provide an immunomodulatory approach targeting specific Th subsets.

Authors

Xiangli Li, Fiona Murray, Naoki Koide, Jonathan Goldstone, Sara M. Dann, Jianzhong Chen, Samuel Bertin, Guo Fu, Lee S. Weinstein, Min Chen, Maripat Corr, Lars Eckmann, Paul A. Insel, Eyal Raz

×

Cxcr2 and Cxcl5 regulate the IL-17/G-CSF axis and neutrophil homeostasis in mice
Junjie Mei, … , Frederic D. Bushman, G. Scott Worthen
Junjie Mei, … , Frederic D. Bushman, G. Scott Worthen
Published February 13, 2012
Citation Information: J Clin Invest. 2012. https://doi.org/10.1172/JCI60588.
View: Text | PDF

Cxcr2 and Cxcl5 regulate the IL-17/G-CSF axis and neutrophil homeostasis in mice

  • Text
  • PDF
Abstract

Neutrophils are essential for maintaining innate immune surveillance under normal conditions, but also represent a major contributor to tissue damage during inflammation. Neutrophil homeostasis is therefore tightly regulated. Cxcr2 plays a critical role in neutrophil homeostasis, as Cxcr2–/– mice demonstrate mild neutrophilia and severe neutrophil hyperplasia in the bone marrow. The mechanisms underlying these phenotypes, however, are unclear. We report here that Cxcr2 on murine neutrophils inhibits the IL-17A/G-CSF axis that regulates neutrophil homeostasis. Furthermore, enterocyte-derived Cxcl5 in the gut regulates IL-17/G-CSF levels and contributes to Cxcr2-dependent neutrophil homeostasis. Conversely, G-CSF was required for Cxcl5-dependent regulation of neutrophil homeostasis, and inhibition of IL-17A reduced plasma G-CSF concentrations and marrow neutrophil numbers in both Cxcl5–/– and Cxcr2–/– mice. Cxcr2–/– mice constitutively expressed IL-17A and showed increased numbers of IL-17A–producing cells in the lung, terminal ileum, and spleen. Most IL-17–producing splenocytes were responsive to IL-1β plus IL-23 in vitro. Depletion of commensal microbes by antibiotic treatment in Cxcr2–/– mice markedly decreased IL-17A and G-CSF expression, neutrophilia, and marrow myeloid hyperplasia. These data suggest a critical role for Cxcr2, Cxcl5, and commensal bacteria in regulation of the IL-17/G-CSF axis and neutrophil homeostasis at mucosal sites and have implications for the development of treatments for pathologies resulting from either excessive or ineffective neutrophil responses.

Authors

Junjie Mei, Yuhong Liu, Ning Dai, Christian Hoffmann, Kristin M. Hudock, Peggy Zhang, Susan H. Guttentag, Jay K. Kolls, Paula M. Oliver, Frederic D. Bushman, G. Scott Worthen

×

Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors
Hélène Salmon, … , Fathia Mami-Chouaib, Emmanuel Donnadieu
Hélène Salmon, … , Fathia Mami-Chouaib, Emmanuel Donnadieu
Published February 1, 2012
Citation Information: J Clin Invest. 2012. https://doi.org/10.1172/JCI45817.
View: Text | PDF

Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors

  • Text
  • PDF
Abstract

Appropriate localization and migration of T cells is a prerequisite for antitumor immune surveillance. Studies using fixed tumor samples from human patients have shown that T cells accumulate more efficiently in the stroma than in tumor islets, but the mechanisms by which this occurs are unknown. By combining immunostaining and real-time imaging in viable slices of human lung tumors, we revealed that the density and the orientation of the stromal extracellular matrix likely play key roles in controlling the migration of T cells. Active T cell motility, dependent on chemokines but not on β1 or β2 integrins, was observed in loose fibronectin and collagen regions, whereas T cells migrated poorly in dense matrix areas. Aligned fibers in perivascular regions and around tumor epithelial cell regions dictated the migratory trajectory of T cells and restricted them from entering tumor islets. Consistently, matrix reduction with collagenase increased the ability of T cells to contact cancer cells. Thus, the stromal extracellular matrix influences antitumor immunity by controlling the positioning and migration of T cells. Understanding the mechanisms by which this collagen network is generated has the potential to aid in the development of new therapeutics.

Authors

Hélène Salmon, Katarzyna Franciszkiewicz, Diane Damotte, Marie-Caroline Dieu-Nosjean, Pierre Validire, Alain Trautmann, Fathia Mami-Chouaib, Emmanuel Donnadieu

×

A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1
Janesh Pillay, … , Peter Pickkers, Leo Koenderman
Janesh Pillay, … , Peter Pickkers, Leo Koenderman
Published December 12, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI57990.
View: Text | PDF

A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1

  • Text
  • PDF
Abstract

Suppression of immune responses is necessary to limit damage to host tissue during inflammation, but it can be detrimental in specific immune responses, such as sepsis and antitumor immunity. Recently, immature myeloid cells have been implicated in the suppression of immune responses in mouse models of cancer, infectious disease, bone marrow transplantation, and autoimmune disease. Here, we report the identification of a subset of mature human neutrophils (CD11cbright/CD62Ldim/CD11bbright/CD16bright) as what we believe to be a unique circulating population of myeloid cells, capable of suppressing human T cell proliferation. These cells were observed in humans in vivo during acute systemic inflammation induced by endotoxin challenge or by severe injury. Local release of hydrogen peroxide from the neutrophils into the immunological synapse between the neutrophils and T cells mediated the suppression of T cell proliferation and required neutrophil expression of the integrin Mac-1 (αMβ2). Our data demonstrate that suppression of T cell function can be accomplished by a subset of human neutrophils that can be systemically induced in response to acute inflammation. Identification of the pivotal role of neutrophil Mac-1 and ROS in this process provides a potential target for modulating immune responses in humans.

Authors

Janesh Pillay, Vera M. Kamp, Els van Hoffen, Tjaakje Visser, Tamar Tak, Jan-Willem Lammers, Laurien H. Ulfman, Luke P. Leenen, Peter Pickkers, Leo Koenderman

×
  • ← Previous
  • 1
  • 2
  • …
  • 96
  • 97
  • 98
  • …
  • 133
  • 134
  • Next →
Exosome delivery promotes allograft rejection
Quan Lui and colleagues reveal that delivery of donor MHC-containing exosomes from donor DCs to recipient DCs drive allograft-targeting immune responses…
Published June 27, 2016
Scientific Show StopperImmunology

Helminth co-infection exacerbates tuberculosis
Leticia Monin and colleagues provide insight how helminth co-infection drives increased susceptibility to severe tuberculosis...
Published November 16, 2015
Scientific Show StopperImmunology

Directing T cell traffic
Yanping Huang and colleagues demonstrate that CRK and CRKL regulate T cell trafficking and T cells lacking these adapter proteins do not home to sites of inflammation….
Published January 26, 2015
Scientific Show StopperImmunology
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts