Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Immune cells control skin lymphatic electrolyte homeostasis and blood pressure
Helge Wiig, … , Kari Alitalo, Jens Titze
Helge Wiig, … , Kari Alitalo, Jens Titze
Published June 3, 2013
Citation Information: J Clin Invest. 2013;123(7):2803-2815. https://doi.org/10.1172/JCI60113.
View: Text | PDF
Research Article Immunology

Immune cells control skin lymphatic electrolyte homeostasis and blood pressure

  • Text
  • PDF
Abstract

The skin interstitium sequesters excess Na+ and Cl– in salt-sensitive hypertension. Mononuclear phagocyte system (MPS) cells are recruited to the skin, sense the hypertonic electrolyte accumulation in skin, and activate the tonicity-responsive enhancer-binding protein (TONEBP, also known as NFAT5) to initiate expression and secretion of VEGFC, which enhances electrolyte clearance via cutaneous lymph vessels and increases eNOS expression in blood vessels. It is unclear whether this local MPS response to osmotic stress is important to systemic blood pressure control. Herein, we show that deletion of TonEBP in mouse MPS cells prevents the VEGFC response to a high-salt diet (HSD) and increases blood pressure. Additionally, an antibody that blocks the lymph-endothelial VEGFC receptor, VEGFR3, selectively inhibited MPS-driven increases in cutaneous lymphatic capillary density, led to skin Cl– accumulation, and induced salt-sensitive hypertension. Mice overexpressing soluble VEGFR3 in epidermal keratinocytes exhibited hypoplastic cutaneous lymph capillaries and increased Na+, Cl–, and water retention in skin and salt-sensitive hypertension. Further, we found that HSD elevated skin osmolality above plasma levels. These results suggest that the skin contains a hypertonic interstitial fluid compartment in which MPS cells exert homeostatic and blood pressure–regulatory control by local organization of interstitial electrolyte clearance via TONEBP and VEGFC/VEGFR3–mediated modification of cutaneous lymphatic capillary function.

Authors

Helge Wiig, Agnes Schröder, Wolfgang Neuhofer, Jonathan Jantsch, Christoph Kopp, Tine V. Karlsen, Michael Boschmann, Jennifer Goss, Maija Bry, Natalia Rakova, Anke Dahlmann, Sven Brenner, Olav Tenstad, Harri Nurmi, Eero Mervaala, Hubertus Wagner, Franz-Xaver Beck, Dominik N. Müller, Dontscho Kerjaschki, Friedrich C. Luft, David G. Harrison, Kari Alitalo, Jens Titze

×

Figure 1

TONEBP in MPS cells is essential for VEGFC-driven lymphatic capillary hyperplasia and clearance of Cl– in the skin and buffers systemic blood pressure.

Options: View larger image (or click on image) Download as PowerPoint
TONEBP in MPS cells is essential for VEGFC-driven lymphatic capillary hy...
(A) Representative whole-mount staining of lymphatic capillary density (anti–Lyve-1 antibody, green) in ears of FVB mice (WT control group) fed LSD and HSD and of LysMWTTonEBPfl/fl mice (without MPS-specific TONEBP deletion) and LysMcreTonEBPfl/fl mice (with MPS-specific TONEBP deletion), both after HSD. Scale bar: 500 μm. (B) Representative VEGFC protein (85 kDa) expression in FVB mice and LysMWTTonEBPfl/fl controls compared with that in LysMcreTonEBPfl/fl mice. β-Actin (42 kDa) expression was used as a loading control. The mice were fed HSD. (C) TonEBP and Vegfc mRNA expression and VEGFC and CD68 protein expression in skin as well as cutaneous lymphatic capillary density (LCD; arbitrary units) and MAP (mmHg) in LysMWTTonEBPfl/fl mice (n = 16) and in LysMcreTonEBPfl/fl mice (n = 12) fed a HSD. (D) Na+ and Cl– content and concentrations in skin compared with plasma concentrations in the same mice. (E) GAG charge densities in the same mice. *P (genotype) < 0.05.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts