Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Immunology

  • 1,420 Articles
  • 3 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 82
  • 83
  • 84
  • …
  • 141
  • 142
  • Next →
NK cell heparanase controls tumor invasion and immune surveillance
Eva M. Putz, Alyce J. Mayfosh, Kevin Kos, Deborah S. Barkauskas, Kyohei Nakamura, Liam Town, Katharine J. Goodall, Dean Y. Yee, Ivan K.H. Poon, Nikola Baschuk, Fernando Souza-Fonseca-Guimaraes, Mark D. Hulett, Mark J. Smyth
Eva M. Putz, Alyce J. Mayfosh, Kevin Kos, Deborah S. Barkauskas, Kyohei Nakamura, Liam Town, Katharine J. Goodall, Dean Y. Yee, Ivan K.H. Poon, Nikola Baschuk, Fernando Souza-Fonseca-Guimaraes, Mark D. Hulett, Mark J. Smyth
View: Text | PDF | Retraction

NK cell heparanase controls tumor invasion and immune surveillance

  • Text
  • PDF
Abstract

NK cells are highly efficient at preventing cancer metastasis but are infrequently found in the core of primary tumors. Here, have we demonstrated that freshly isolated mouse and human NK cells express low levels of the endo-β-D-glucuronidase heparanase that increase upon NK cell activation. Heparanase deficiency did not affect development, differentiation, or tissue localization of NK cells under steady-state conditions. However, mice lacking heparanase specifically in NK cells (Hpsefl/fl NKp46-iCre mice) were highly tumor prone when challenged with the carcinogen methylcholanthrene (MCA). Hpsefl/fl NKp46-iCre mice were also more susceptible to tumor growth than were their littermate controls when challenged with the established mouse lymphoma cell line RMA-S-RAE-1β, which overexpresses the NK cell group 2D (NKG2D) ligand RAE-1β, or when inoculated with metastatic melanoma, prostate carcinoma, or mammary carcinoma cell lines. NK cell invasion of primary tumors and recruitment to the site of metastasis were strictly dependent on the presence of heparanase. Cytokine and immune checkpoint blockade immunotherapy for metastases was compromised when NK cells lacked heparanase. Our data suggest that heparanase plays a critical role in NK cell invasion into tumors and thereby tumor progression and metastases. This should be considered when systemically treating cancer patients with heparanase inhibitors, since the potential adverse effect on NK cell infiltration might limit the antitumor activity of the inhibitors.

Authors

Eva M. Putz, Alyce J. Mayfosh, Kevin Kos, Deborah S. Barkauskas, Kyohei Nakamura, Liam Town, Katharine J. Goodall, Dean Y. Yee, Ivan K.H. Poon, Nikola Baschuk, Fernando Souza-Fonseca-Guimaraes, Mark D. Hulett, Mark J. Smyth

×

Tregs restrain dendritic cell autophagy to ameliorate autoimmunity
Themis Alissafi, Aggelos Banos, Louis Boon, Tim Sparwasser, Alessandra Ghigo, Kajsa Wing, Dimitrios Vassilopoulos, Dimitrios Boumpas, Triantafyllos Chavakis, Ken Cadwell, Panayotis Verginis
Themis Alissafi, Aggelos Banos, Louis Boon, Tim Sparwasser, Alessandra Ghigo, Kajsa Wing, Dimitrios Vassilopoulos, Dimitrios Boumpas, Triantafyllos Chavakis, Ken Cadwell, Panayotis Verginis
View: Text | PDF

Tregs restrain dendritic cell autophagy to ameliorate autoimmunity

  • Text
  • PDF
Abstract

Design of efficacious Treg-based therapies and establishment of clinical tolerance in autoimmune diseases have proven to be challenging. The clinical implementation of Treg immunotherapy has been hampered by various impediments related to the stability and isolation procedures of Tregs as well as the specific in vivo targets of Treg modalities. Herein, we have demonstrated that Foxp3+ Tregs potently suppress autoimmune responses in vivo through inhibition of the autophagic machinery in DCs in a cytotoxic T-lymphocyte–associated protein 4–dependent (CTLA4-dependent) manner. Autophagy-deficient DCs exhibited reduced immunogenic potential and failed to prime autoantigen-specific CD4+ T cells to mediate autoimmunity. Mechanistically, CTLA4 binding promoted activation of the PI3K/Akt/mTOR axis and FoxO1 nuclear exclusion in DCs, leading to decreased transcription of the autophagy component microtubule-associated protein 1 light chain 3β (Lc3b). Human DCs treated with CTLA4-Ig, a fusion protein composed of the Fc region of IgG1 and the extracellular domain of CTLA4 (also known as abatacept, marketed as Orencia), demonstrated reduced levels of autophagosome formation, while DCs from CTLA4-Ig–treated rheumatoid arthritis patients displayed diminished LC3B transcripts. Collectively, our data identify the canonical autophagy pathway in DCs as a molecular target of Foxp3+ Treg–mediated suppression that leads to amelioration of autoimmune responses. These findings may pave the way for the development of therapeutic protocols that exploit Tregs for the treatment of autoimmunity as well as diseases in which disturbed tolerance is a common denominator.

Authors

Themis Alissafi, Aggelos Banos, Louis Boon, Tim Sparwasser, Alessandra Ghigo, Kajsa Wing, Dimitrios Vassilopoulos, Dimitrios Boumpas, Triantafyllos Chavakis, Ken Cadwell, Panayotis Verginis

×

The RNA-binding protein tristetraprolin schedules apoptosis of pathogen-engaged neutrophils during bacterial infection
Florian Ebner, Vitaly Sedlyarov, Saren Tasciyan, Masa Ivin, Franz Kratochvill, Nina Gratz, Lukas Kenner, Andreas Villunger, Michael Sixt, Pavel Kovarik
Florian Ebner, Vitaly Sedlyarov, Saren Tasciyan, Masa Ivin, Franz Kratochvill, Nina Gratz, Lukas Kenner, Andreas Villunger, Michael Sixt, Pavel Kovarik
View: Text | PDF

The RNA-binding protein tristetraprolin schedules apoptosis of pathogen-engaged neutrophils during bacterial infection

  • Text
  • PDF
Abstract

Protective responses against pathogens require a rapid mobilization of resting neutrophils and the timely removal of activated ones. Neutrophils are exceptionally short-lived leukocytes, yet it remains unclear whether the lifespan of pathogen-engaged neutrophils is regulated differently from that in the circulating steady-state pool. Here, we have found that under homeostatic conditions, the mRNA-destabilizing protein tristetraprolin (TTP) regulates apoptosis and the numbers of activated infiltrating murine neutrophils but not neutrophil cellularity. Activated TTP-deficient neutrophils exhibited decreased apoptosis and enhanced accumulation at the infection site. In the context of myeloid-specific deletion of Ttp, the potentiation of neutrophil deployment protected mice against lethal soft tissue infection with Streptococcus pyogenes and prevented bacterial dissemination. Neutrophil transcriptome analysis revealed that decreased apoptosis of TTP-deficient neutrophils was specifically associated with elevated expression of myeloid cell leukemia 1 (Mcl1) but not other antiapoptotic B cell leukemia/lymphoma 2 (Bcl2) family members. Higher Mcl1 expression resulted from stabilization of Mcl1 mRNA in the absence of TTP. The low apoptosis rate of infiltrating TTP-deficient neutrophils was comparable to that of transgenic Mcl1-overexpressing neutrophils. Our study demonstrates that posttranscriptional gene regulation by TTP schedules the termination of the antimicrobial engagement of neutrophils. The balancing role of TTP comes at the cost of an increased risk of bacterial infections.

Authors

Florian Ebner, Vitaly Sedlyarov, Saren Tasciyan, Masa Ivin, Franz Kratochvill, Nina Gratz, Lukas Kenner, Andreas Villunger, Michael Sixt, Pavel Kovarik

×

CD1b-autoreactive T cells contribute to hyperlipidemia-induced skin inflammation in mice
Sreya Bagchi, Ying He, Hong Zhang, Liang Cao, Ildiko Van Rhijn, D. Branch Moody, Johann E. Gudjonsson, Chyung-Ru Wang
Sreya Bagchi, Ying He, Hong Zhang, Liang Cao, Ildiko Van Rhijn, D. Branch Moody, Johann E. Gudjonsson, Chyung-Ru Wang
View: Text | PDF

CD1b-autoreactive T cells contribute to hyperlipidemia-induced skin inflammation in mice

  • Text
  • PDF
Abstract

A large proportion of human T cells are autoreactive to group 1 CD1 proteins, which include CD1a, CD1b, and CD1c. However, the physiological role of the CD1 proteins remains poorly defined. Here, we have generated a double-transgenic mouse model that expresses human CD1b and CD1c molecules (hCD1Tg) as well as a CD1b-autoreactive TCR (HJ1Tg) in the ApoE-deficient background (hCD1Tg HJ1Tg Apoe–/– mice) to determine the role of CD1-autoreactive T cells in hyperlipidemia-associated inflammatory diseases. We found that hCD1Tg HJ1Tg Apoe–/– mice spontaneously developed psoriasiform skin inflammation characterized by T cell and neutrophil infiltration and a Th17-biased cytokine response. Anti–IL-17A treatment ameliorated skin inflammation in vivo. Additionally, phospholipids and cholesterol preferentially accumulated in diseased skin and these autoantigens directly activated CD1b-autoreactive HJ1 T cells. Furthermore, hyperlipidemic serum enhanced IL-6 secretion by CD1b+ DCs and increased IL-17A production by HJ1 T cells. In psoriatic patients, the frequency of CD1b-autoreactive T cells was increased compared with that in healthy controls. Thus, this study has demonstrated the pathogenic role of CD1b-autoreactive T cells under hyperlipidemic conditions in a mouse model of spontaneous skin inflammation. As a large proportion of psoriatic patients are dyslipidemic, this finding is of clinical significance and indicates that self-lipid–reactive T cells might serve as a possible link between hyperlipidemia and psoriasis.

Authors

Sreya Bagchi, Ying He, Hong Zhang, Liang Cao, Ildiko Van Rhijn, D. Branch Moody, Johann E. Gudjonsson, Chyung-Ru Wang

×

Bispecific antibody targets multiple Pseudomonas aeruginosa evasion mechanisms in the lung vasculature
Ajitha Thanabalasuriar, Bas G.J. Surewaard, Michelle E. Willson, Arpan S. Neupane, Charles K. Stover, Paul Warrener, George Wilson, Ashley E. Keller, Bret R. Sellman, Antonio DiGiandomenico, Paul Kubes
Ajitha Thanabalasuriar, Bas G.J. Surewaard, Michelle E. Willson, Arpan S. Neupane, Charles K. Stover, Paul Warrener, George Wilson, Ashley E. Keller, Bret R. Sellman, Antonio DiGiandomenico, Paul Kubes
View: Text | PDF

Bispecific antibody targets multiple Pseudomonas aeruginosa evasion mechanisms in the lung vasculature

  • Text
  • PDF
Abstract

Pseudomonas aeruginosa is a major cause of severe infections that lead to bacteremia and high patient mortality. P. aeruginosa has evolved numerous evasion and subversion mechanisms that work in concert to overcome immune recognition and effector functions in hospitalized and immunosuppressed individuals. Here, we have used multilaser spinning-disk intravital microscopy to monitor the blood-borne stage in a murine bacteremic model of P. aeruginosa infection. P. aeruginosa adhered avidly to lung vasculature, where patrolling neutrophils and other immune cells were virtually blind to the pathogen’s presence. This cloaking phenomenon was attributed to expression of Psl exopolysaccharide. Although an anti-Psl mAb activated complement and enhanced neutrophil recognition of P. aeruginosa, neutrophil-mediated clearance of the pathogen was suboptimal owing to a second subversion mechanism, namely the type 3 secretion (T3S) injectisome. Indeed, T3S prevented phagosome acidification and resisted killing inside these compartments. Antibody-mediated inhibition of the T3S protein PcrV did not enhance bacterial phagocytosis but did enhance killing of the few bacteria ingested by neutrophils. A bispecific mAb targeting both Psl and PcrV enhanced neutrophil uptake of P. aeruginosa and also greatly increased inhibition of T3S function, allowing for phagosome acidification and bacterial killing. These data highlight the need to block multiple evasion and subversion mechanisms in tandem to kill P. aeruginosa.

Authors

Ajitha Thanabalasuriar, Bas G.J. Surewaard, Michelle E. Willson, Arpan S. Neupane, Charles K. Stover, Paul Warrener, George Wilson, Ashley E. Keller, Bret R. Sellman, Antonio DiGiandomenico, Paul Kubes

×

TNF superfamily receptor OX40 triggers invariant NKT cell pyroptosis and liver injury
Peixiang Lan, Yihui Fan, Yue Zhao, Xiaohua Lou, Howard P. Monsour, Xiaolong Zhang, Yongwon Choi, Yaling Dou, Naoto Ishii, Rafik M. Ghobrial, Xiang Xiao, Xian Chang Li
Peixiang Lan, Yihui Fan, Yue Zhao, Xiaohua Lou, Howard P. Monsour, Xiaolong Zhang, Yongwon Choi, Yaling Dou, Naoto Ishii, Rafik M. Ghobrial, Xiang Xiao, Xian Chang Li
View: Text | PDF

TNF superfamily receptor OX40 triggers invariant NKT cell pyroptosis and liver injury

  • Text
  • PDF
Abstract

Tissue-resident immune cells play a key role in local and systemic immune responses. The liver, in particular, hosts a large number of invariant natural killer T (iNKT) cells, which are involved in diverse immune responses. However, the mechanisms that regulate survival and homeostasis of liver iNKT cells are poorly defined. Here we have found that liver iNKT cells constitutively express the costimulatory TNF superfamily receptor OX40 and that OX40 stimulation results in massive pyroptotic death of iNKT cells, characterized by the release of potent proinflammatory cytokines that induce liver injury. This OX40/NKT pyroptosis pathway also plays a key role in concanavalin A–induced murine hepatitis. Mechanistically, we demonstrated that liver iNKT cells express high levels of caspase 1 and that OX40 stimulation activates caspase 1 via TNF receptor–associated factor 6–mediated recruitment of the paracaspase MALT1. We also found that activation of caspase 1 in iNKT cells results in processing of pro–IL-1β to mature IL-1β as well as cleavage of the pyroptotic protein gasdermin D, which generates a membrane pore–forming fragment to produce pyroptotic cell death. Thus, our study has identified OX40 as a death receptor for iNKT cells and uncovered a molecular mechanism of pyroptotic cell death. These findings may have important clinical implications in the development of OX40-directed therapies.

Authors

Peixiang Lan, Yihui Fan, Yue Zhao, Xiaohua Lou, Howard P. Monsour, Xiaolong Zhang, Yongwon Choi, Yaling Dou, Naoto Ishii, Rafik M. Ghobrial, Xiang Xiao, Xian Chang Li

×

An inflammatory bowel disease–risk variant in INAVA decreases pattern recognition receptor–induced outcomes
Jie Yan, Matija Hedl, Clara Abraham
Jie Yan, Matija Hedl, Clara Abraham
View: Text | PDF

An inflammatory bowel disease–risk variant in INAVA decreases pattern recognition receptor–induced outcomes

  • Text
  • PDF
Abstract

Inflammatory bowel disease (IBD) is characterized by dysregulation in both cytokines and responses to intestinal microbes, and proper regulation of pattern recognition receptor (PRR) signaling is critical for intestinal immune homeostasis. Altered functions for the IBD risk locus containing rs7554511, which encompasses the C1orf106 gene (recently named INAVA), and roles for the protein encoded by the INAVA gene are unknown. Here, we investigated the role of INAVA and INAVA genotype in regulating PRR-initiated outcomes in primary human cells. Both peripheral and intestinal myeloid cells expressed INAVA. Upon PRR stimulation, INAVA was required for optimal MAPK and NF-κB activation, cytokine secretion, and intracellular bacterial clearance. INAVA recruited 14-3-3τ, thereby contributing to recruitment of a signaling complex that amplified downstream signals and cytokines. Further, INAVA enhanced bacterial clearance by regulating reactive oxygen, reactive nitrogen, and autophagy pathways. Macrophages from rs7554511 C risk carriers expressed lower levels of INAVA RNA and protein. Lower expression was attributed in part to decreased transcription mediated directly by the intronic region containing the rs7554511 C variant. In rs7554511 C risk carrier macrophages, lower INAVA expression led to decreased PRR-induced activation of MAPK and NF-κB pathways, cytokines, and bacterial clearance pathways. Thus, IBD-associated polymorphisms in INAVA modulate PRR-initiated signaling, cytokines, and intracellular bacterial clearance, likely contributing to intestinal immune homeostasis.

Authors

Jie Yan, Matija Hedl, Clara Abraham

×

Dendritic cells expressing immunoreceptor CD300f are critical for controlling chronic gut inflammation
Ha-Na Lee, Linjie Tian, Nicolas Bouladoux, Jacquice Davis, Mariam Quinones, Yasmine Belkaid, John E. Coligan, Konrad Krzewski
Ha-Na Lee, Linjie Tian, Nicolas Bouladoux, Jacquice Davis, Mariam Quinones, Yasmine Belkaid, John E. Coligan, Konrad Krzewski
View: Text | PDF

Dendritic cells expressing immunoreceptor CD300f are critical for controlling chronic gut inflammation

  • Text
  • PDF
Abstract

Proinflammatory cytokine overproduction and excessive cell death, coupled with impaired clearance of apoptotic cells, have been implicated as causes of failure to resolve gut inflammation in inflammatory bowel diseases. Here we have found that dendritic cells expressing the apoptotic cell–recognizing receptor CD300f play a crucial role in regulating gut inflammatory responses in a murine model of colonic inflammation. CD300f-deficient mice failed to resolve dextran sulfate sodium–induced colonic inflammation as a result of defects in dendritic cell function that were associated with abnormal accumulation of apoptotic cells in the gut. CD300f-deficient dendritic cells displayed hyperactive phagocytosis of apoptotic cells, which stimulated excessive TNF-α secretion predominantly from dendritic cells. This, in turn, induced secondary IFN-γ overproduction by colonic T cells, leading to prolonged gut inflammation. Our data highlight a previously unappreciated role for dendritic cells in controlling gut homeostasis and show that CD300f-dependent regulation of apoptotic cell uptake is essential for suppressing overactive dendritic cell–mediated inflammatory responses, thereby controlling the development of chronic gut inflammation.

Authors

Ha-Na Lee, Linjie Tian, Nicolas Bouladoux, Jacquice Davis, Mariam Quinones, Yasmine Belkaid, John E. Coligan, Konrad Krzewski

×

Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency
Julien Cottineau, et al.
Julien Cottineau, et al.
View: Text | PDF

Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency

  • Text
  • PDF
Abstract

Inborn errors of DNA repair or replication underlie a variety of clinical phenotypes. We studied 5 patients from 4 kindreds, all of whom displayed intrauterine growth retardation, chronic neutropenia, and NK cell deficiency. Four of the 5 patients also had postnatal growth retardation. The association of neutropenia and NK cell deficiency, which is unusual among primary immunodeficiencies and bone marrow failures, was due to a blockade in the bone marrow and was mildly symptomatic. We discovered compound heterozygous rare mutations in Go-Ichi-Ni-San (GINS) complex subunit 1 (GINS1, also known as PSF1) in the 5 patients. The GINS complex is essential for eukaryotic DNA replication, and homozygous null mutations of GINS component–encoding genes are embryonic lethal in mice. The patients’ fibroblasts displayed impaired GINS complex assembly, basal replication stress, impaired checkpoint signaling, defective cell cycle control, and genomic instability, which was rescued by WT GINS1. The residual levels of GINS1 activity reached 3% to 16% in patients’ cells, depending on their GINS1 genotype, and correlated with the severity of growth retardation and the in vitro cellular phenotype. The levels of GINS1 activity did not influence the immunological phenotype, which was uniform. Autosomal recessive, partial GINS1 deficiency impairs DNA replication and underlies intra-uterine (and postnatal) growth retardation, chronic neutropenia, and NK cell deficiency.

Authors

Julien Cottineau, Molly C. Kottemann, Francis P. Lach, Young-Hoon Kang, Frédéric Vély, Elissa K. Deenick, Tomi Lazarov, Laure Gineau, Yi Wang, Andrea Farina, Marie Chansel, Lazaro Lorenzo, Christelle Piperoglou, Cindy S. Ma, Patrick Nitschke, Aziz Belkadi, Yuval Itan, Bertrand Boisson, Fabienne Jabot-Hanin, Capucine Picard, Jacinta Bustamante, Céline Eidenschenk, Soraya Boucherit, Nathalie Aladjidi, Didier Lacombe, Pascal Barat, Waseem Qasim, Jane A. Hurst, Andrew J. Pollard, Holm H. Uhlig, Claire Fieschi, Jean Michon, Vladimir P. Bermudez, Laurent Abel, Jean-Pierre de Villartay, Frédéric Geissmann, Stuart G. Tangye, Jerard Hurwitz, Eric Vivier, Jean-Laurent Casanova, Agata Smogorzewska, Emmanuelle Jouanguy

×

PD-L1 interacts with CD80 to regulate graft-versus-leukemia activity of donor CD8+ T cells
Xiong Ni, Qingxiao Song, Kaniel Cassady, Ruishu Deng, Hua Jin, Mingfeng Zhang, Haidong Dong, Stephen Forman, Paul J. Martin, Yuan-Zhong Chen, Jianmin Wang, Defu Zeng
Xiong Ni, Qingxiao Song, Kaniel Cassady, Ruishu Deng, Hua Jin, Mingfeng Zhang, Haidong Dong, Stephen Forman, Paul J. Martin, Yuan-Zhong Chen, Jianmin Wang, Defu Zeng
View: Text | PDF

PD-L1 interacts with CD80 to regulate graft-versus-leukemia activity of donor CD8+ T cells

  • Text
  • PDF
Abstract

Programmed death ligand-1 (PD-L1) interacts with programmed death-1 (PD-1) and the immunostimulatory molecule CD80 and functions as a checkpoint to regulate immune responses. The interaction of PD-L1 with CD80 alone has been shown to exacerbate the severity of graft-versus-host disease (GVHD), whereas costimulation of CD80 and PD-1 ameliorates GVHD. Here we have demonstrated that temporary depletion of donor CD4+ T cells early after hematopoietic cell transplantation effectively prevents GVHD while preserving strong graft-versus-leukemia (GVL) effects in allogeneic and xenogeneic murine GVHD models. Depletion of donor CD4+ T cells increased serum IFN-γ but reduced IL-2 concentrations, leading to upregulation of PD-L1 expression by recipient tissues and donor CD8+ T cells. In GVHD target tissues, the interactions of PD-L1 with PD-1 on donor CD8+ T cells cause anergy, exhaustion, and apoptosis, thereby preventing GVHD. In lymphoid tissues, the interactions of PD-L1 with CD80 augment CD8+ T cell expansion without increasing anergy, exhaustion, or apoptosis, resulting in strong GVL effects. These results indicate that the outcome of PD-L1–mediated signaling in CD8+ T cells depends on the presence or absence of CD4+ T cells, the nature of the interacting receptor expressed by CD8+ T cells, and the tissue environment in which the signaling occurs.

Authors

Xiong Ni, Qingxiao Song, Kaniel Cassady, Ruishu Deng, Hua Jin, Mingfeng Zhang, Haidong Dong, Stephen Forman, Paul J. Martin, Yuan-Zhong Chen, Jianmin Wang, Defu Zeng

×
  • ← Previous
  • 1
  • 2
  • …
  • 82
  • 83
  • 84
  • …
  • 141
  • 142
  • Next →
Exosome delivery promotes allograft rejection
Quan Lui and colleagues reveal that delivery of donor MHC-containing exosomes from donor DCs to recipient DCs drive allograft-targeting immune responses…
Published June 27, 2016
Scientific Show StopperImmunology

Helminth co-infection exacerbates tuberculosis
Leticia Monin and colleagues provide insight how helminth co-infection drives increased susceptibility to severe tuberculosis...
Published November 16, 2015
Scientific Show StopperImmunology

Directing T cell traffic
Yanping Huang and colleagues demonstrate that CRK and CRKL regulate T cell trafficking and T cells lacking these adapter proteins do not home to sites of inflammation….
Published January 26, 2015
Scientific Show StopperImmunology
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts