Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Immunology

  • 1,452 Articles
  • 3 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 111
  • 112
  • 113
  • …
  • 145
  • 146
  • Next →
CD8+ T cells with an intraepithelial phenotype upregulate cytotoxic function upon influenza infection in human lung
Berber Piet, Godelieve J. de Bree, Barbara S. Smids-Dierdorp, Chris M. van der Loos, Ester B.M. Remmerswaal, Jan H. von der Thüsen, Jan M.W. van Haarst, Jan P. Eerenberg, Anja ten Brinke, Wim van der Bij, Wim Timens, René A.W. van Lier, René E. Jonkers
Berber Piet, Godelieve J. de Bree, Barbara S. Smids-Dierdorp, Chris M. van der Loos, Ester B.M. Remmerswaal, Jan H. von der Thüsen, Jan M.W. van Haarst, Jan P. Eerenberg, Anja ten Brinke, Wim van der Bij, Wim Timens, René A.W. van Lier, René E. Jonkers
View: Text | PDF

CD8+ T cells with an intraepithelial phenotype upregulate cytotoxic function upon influenza infection in human lung

  • Text
  • PDF
Abstract

The human lung T cell compartment contains many CD8+ T cells specific for respiratory viruses, suggesting that the lung is protected from recurring respiratory infections by a resident T cell pool. The entry site for respiratory viruses is the epithelium, in which a subset of lung CD8+ T cells expressing CD103 (αE integrin) resides. Here, we determined the specificity and function of CD103+CD8+ T cells in protecting human lung against viral infection. Mononuclear cells were isolated from human blood and lung resection samples. Variable numbers of CD103+CD8+ T cells were retrieved from the lung tissue. Interestingly, expression of CD103 was seen only in lung CD8+ T cells specific for influenza but not in those specific for EBV or CMV. CD103+ and influenza-reactive cells preferentially expressed NKG2A, an inhibitor of CD8+ T cell cytotoxic function. In contrast to CD103–CD8+ T cells, most CD103+CD8+ cells did not contain perforin or granzyme B. However, they could quickly upregulate these cytotoxic mediators when exposed to a type I IFN milieu or via contact with their specific antigen. This mechanism may provide a rapid and efficient response to influenza infection, without inducing cytotoxic damage to the delicate epithelial barrier.

Authors

Berber Piet, Godelieve J. de Bree, Barbara S. Smids-Dierdorp, Chris M. van der Loos, Ester B.M. Remmerswaal, Jan H. von der Thüsen, Jan M.W. van Haarst, Jan P. Eerenberg, Anja ten Brinke, Wim van der Bij, Wim Timens, René A.W. van Lier, René E. Jonkers

×

Epicutaneous challenge of orally immunized mice redirects antigen-specific gut-homing T cells to the skin
Michiko K. Oyoshi, Abdallah Elkhal, Jordan E. Scott, Marc-Andre Wurbel, Jason L. Hornick, James J. Campbell, Raif S. Geha
Michiko K. Oyoshi, Abdallah Elkhal, Jordan E. Scott, Marc-Andre Wurbel, Jason L. Hornick, James J. Campbell, Raif S. Geha
View: Text | PDF

Epicutaneous challenge of orally immunized mice redirects antigen-specific gut-homing T cells to the skin

  • Text
  • PDF
Abstract

Patients with atopic dermatitis (AD) often suffer from food allergy and develop flares upon skin contact with food allergens. However, it is unclear whether T cells sensitized to allergens in the gut promote this skin inflammation. To address this question, we orally immunized WT mice and mice lacking the skin-homing chemokine receptor Ccr4 (Ccr4–/– mice) with OVA and then challenged them epicutaneously with antigen. Allergic skin inflammation developed in the WT mice but not in the mutants and was characterized by epidermal thickening, dermal infiltration by eosinophils and CD4+ T cells, and upregulation of Th2 cytokines. T cells purified from mesenteric lymph nodes (MLNs) of orally immunized WT mice transferred allergic skin inflammation to naive recipients cutaneously challenged with antigen, but this effect was lost in T cells purified from Ccr4–/– mice. In addition, the ability of adoptively transferred OVA-activated T cells to home to the skin following cutaneous OVA challenge was ablated in mice that lacked lymph nodes. These results indicate that cutaneous exposure to food antigens can reprogram gut-homing effector T cells in LNs to express skin-homing receptors, eliciting skin lesions upon food allergen contact in orally sensitized AD patients.

Authors

Michiko K. Oyoshi, Abdallah Elkhal, Jordan E. Scott, Marc-Andre Wurbel, Jason L. Hornick, James J. Campbell, Raif S. Geha

×

CD28 costimulation improves expansion and persistence of chimeric antigen receptor–modified T cells in lymphoma patients
Barbara Savoldo, Carlos Almeida Ramos, Enli Liu, Martha P. Mims, Michael J. Keating, George Carrum, Rammurti T. Kamble, Catherine M. Bollard, Adrian P. Gee, Zhuyong Mei, Hao Liu, Bambi Grilley, Cliona M. Rooney, Helen E. Heslop, Malcolm K. Brenner, Gianpietro Dotti
Barbara Savoldo, Carlos Almeida Ramos, Enli Liu, Martha P. Mims, Michael J. Keating, George Carrum, Rammurti T. Kamble, Catherine M. Bollard, Adrian P. Gee, Zhuyong Mei, Hao Liu, Bambi Grilley, Cliona M. Rooney, Helen E. Heslop, Malcolm K. Brenner, Gianpietro Dotti
View: Text | PDF

CD28 costimulation improves expansion and persistence of chimeric antigen receptor–modified T cells in lymphoma patients

  • Text
  • PDF
Abstract

Targeted T cell immunotherapies using engineered T lymphocytes expressing tumor-directed chimeric antigen receptors (CARs) are designed to benefit patients with cancer. Although incorporation of costimulatory endodomains within these CARs increases the proliferation of CAR-redirected T lymphocytes, it has proven difficult to draw definitive conclusions about the specific effects of costimulatory endodomains on the expansion, persistence, and antitumor effectiveness of CAR-redirected T cells in human subjects, owing to the lack of side-by-side comparisons with T cells bearing only a single signaling domain. We therefore designed a study that allowed us to directly measure the consequences of adding a costimulatory endodomain to CAR-redirected T cells. Patients with B cell lymphomas were simultaneously infused with 2 autologous T cell products expressing CARs with the same specificity for the CD19 antigen, present on most B cell malignancies. One CAR encoded both the costimulatory CD28 and the ζ-endodomains, while the other encoded only the ζ-endodomain. CAR+ T cells containing the CD28 endodomain showed strikingly enhanced expansion and persistence compared with CAR+ T cells lacking this endodomain. These results demonstrate the superiority of CARs with dual signal domains and confirm a method of comparing CAR-modified T cells within individual patients, thereby avoiding patient-to-patient variability and accelerating the development of optimal T cell immunotherapies.

Authors

Barbara Savoldo, Carlos Almeida Ramos, Enli Liu, Martha P. Mims, Michael J. Keating, George Carrum, Rammurti T. Kamble, Catherine M. Bollard, Adrian P. Gee, Zhuyong Mei, Hao Liu, Bambi Grilley, Cliona M. Rooney, Helen E. Heslop, Malcolm K. Brenner, Gianpietro Dotti

×

Protective T cell immunity in mice following protein-TLR7/8 agonist-conjugate immunization requires aggregation, type I IFN, and multiple DC subsets
Kathrin Kastenmüller, Ulrike Wille-Reece, Ross W.B. Lindsay, Lauren R. Trager, Patricia A. Darrah, Barbara J. Flynn, Maria R. Becker, Mark C. Udey, Björn E. Clausen, Botond Z. Igyarto, Daniel H. Kaplan, Wolfgang Kastenmüller, Ronald N. Germain, Robert A. Seder
Kathrin Kastenmüller, Ulrike Wille-Reece, Ross W.B. Lindsay, Lauren R. Trager, Patricia A. Darrah, Barbara J. Flynn, Maria R. Becker, Mark C. Udey, Björn E. Clausen, Botond Z. Igyarto, Daniel H. Kaplan, Wolfgang Kastenmüller, Ronald N. Germain, Robert A. Seder
View: Text | PDF

Protective T cell immunity in mice following protein-TLR7/8 agonist-conjugate immunization requires aggregation, type I IFN, and multiple DC subsets

  • Text
  • PDF
Abstract

The success of a non-live vaccine requires improved formulation and adjuvant selection to generate robust T cell immunity following immunization. Here, using protein linked to a TLR7/8 agonist (conjugate vaccine), we investigated the functional properties of vaccine formulation, the cytokines, and the DC subsets required to induce protective multifunctional T cell immunity in vivo. The conjugate vaccine required aggregation of the protein to elicit potent Th1 CD4+ and CD8+ T cell responses. Remarkably, the conjugate vaccine, through aggregation of the protein and activation of TLR7 in vivo, led to an influx of migratory DCs to the LN and increased antigen uptake by several resident and migratory DC subsets, with the latter effect strongly influenced by vaccine-induced type I IFN. Ex vivo migratory CD8–DEC205+CD103–CD326– langerin-negative dermal DCs were as potent in cross-presenting antigen to naive CD8+ T cells as CD11c+CD8+ DCs. Moreover, these cells also influenced Th1 CD4+ T cell priming. In summary, we propose a model in which broad-based T cell–mediated responses upon vaccination can be maximized by codelivery of aggregated protein and TLR7/8 agonist, which together promote optimal antigen acquisition and presentation by multiple DC subsets in the context of critical proinflammatory cytokines.

Authors

Kathrin Kastenmüller, Ulrike Wille-Reece, Ross W.B. Lindsay, Lauren R. Trager, Patricia A. Darrah, Barbara J. Flynn, Maria R. Becker, Mark C. Udey, Björn E. Clausen, Botond Z. Igyarto, Daniel H. Kaplan, Wolfgang Kastenmüller, Ronald N. Germain, Robert A. Seder

×

The majority of intestinal IgA+ and IgG+ plasmablasts in the human gut are antigen-specific
Julia Benckert, Nina Schmolka, Cornelia Kreschel, Markus Josef Zoller, Andreas Sturm, Bertram Wiedenmann, Hedda Wardemann
Julia Benckert, Nina Schmolka, Cornelia Kreschel, Markus Josef Zoller, Andreas Sturm, Bertram Wiedenmann, Hedda Wardemann
View: Text | PDF

The majority of intestinal IgA+ and IgG+ plasmablasts in the human gut are antigen-specific

  • Text
  • PDF
Abstract

Mucosal antibody responses play a major role in mediating homeostasis with the intestinal flora. It has been suggested that imbalance in the IgA+ and IgG+ intestinal B cell repertoire may be associated with the development of diseases such as inflammatory bowel disease. Despite this, little is known about the antibody specificity of human intestinal plasmablasts. Here, we have determined the reactivity profile of single isolated IgA+ and IgG+ plasmablasts from human terminal ileum using antibody cloning and in vitro expression. We found that approximately 25% of intestinal IgA and IgG plasmablast antibodies were polyreactive; the majority were antigen-specific. Antigen specificity was not only directed against enteropathogenic microbes but also against commensal microbes and self antigens. Regardless of their reactivity, all intestinal antibodies were somatically mutated and showed signs of antigen-mediated selection, suggesting that they developed from antigen-specific B cell responses. Together, our data indicate that antigen-specific immune responses to intestinal microbes are largely responsible for the maintenance of intestinal homeostasis and thus provide a basis for understanding the deregulated immune responses observed in patients with inflammatory bowel disease.

Authors

Julia Benckert, Nina Schmolka, Cornelia Kreschel, Markus Josef Zoller, Andreas Sturm, Bertram Wiedenmann, Hedda Wardemann

×

Effective posttransplant antitumor immunity is associated with TLR-stimulating nucleic acid–immunoglobulin complexes in humans
Yun Lin, Li Zhang, Ann X. Cai, Mark Lee, Wandi Zhang, Donna Neuberg, Christine M. Canning, Robert J. Soiffer, Edwin P. Alyea, Jerome Ritz, Nir Hacohen, Terry K. Means, Catherine J. Wu
Yun Lin, Li Zhang, Ann X. Cai, Mark Lee, Wandi Zhang, Donna Neuberg, Christine M. Canning, Robert J. Soiffer, Edwin P. Alyea, Jerome Ritz, Nir Hacohen, Terry K. Means, Catherine J. Wu
View: Text | PDF

Effective posttransplant antitumor immunity is associated with TLR-stimulating nucleic acid–immunoglobulin complexes in humans

  • Text
  • PDF
Abstract

Donor lymphocyte infusion (DLI), whereby donor mononuclear cells are infused into patients, is one of the few effective immunotherapeutic strategies that generate long-lasting tumor remissions. We previously demonstrated that chronic myelogenous leukemia (CML) patients treated with DLI develop high-titer plasma antibodies specific for CML-associated antigens, the majority of which have been reported to bind nucleic acids These observations led us to predict that circulating antibody-antigen complexes in DLI-responsive patients carry nucleic acids that can engage innate immune sensors. Consistent with this, we report here that post-DLI plasma from 5 CML patients that responded to DLI treatment induced massive upregulation of MIP-1α, IP-10, and IFN-α in normal blood mononuclear cells. Importantly, this was not observed with plasma obtained before DLI and from DLI nonresponders and imatinib-treated patients. This endogenous immunostimulatory activity required nucleic acid and protein for its adjuvant effect and activated antigen-presenting cells through the RNA and DNA sensors TLR8 and TLR9. Presence of the immunoglobulin Fc receptor CD32 enhanced cellular responses, suggesting that immunoglobulins associate with this activity. Finally, a TLR-induced expression signature was detectable in post-DLI but not pre-DLI blood, consistent with an active circulating TLR8/9-stimulating factor. We have therefore demonstrated that effective tumor immunity correlates with the presence of endogenous nucleic acid–immunoglobulin complexes in patient plasma, thus providing a putative mechanism for the induction of potent antigen-specific immunity against malignant cells.

Authors

Yun Lin, Li Zhang, Ann X. Cai, Mark Lee, Wandi Zhang, Donna Neuberg, Christine M. Canning, Robert J. Soiffer, Edwin P. Alyea, Jerome Ritz, Nir Hacohen, Terry K. Means, Catherine J. Wu

×

RNA sensor–induced type I IFN prevents diabetes caused by a β cell–tropic virus in mice
Stephen A. McCartney, William Vermi, Silvia Lonardi, Cristina Rossini, Karel Otero, Boris Calderon, Susan Gilfillan, Michael S. Diamond, Emil R. Unanue, Marco Colonna
Stephen A. McCartney, William Vermi, Silvia Lonardi, Cristina Rossini, Karel Otero, Boris Calderon, Susan Gilfillan, Michael S. Diamond, Emil R. Unanue, Marco Colonna
View: Text | PDF

RNA sensor–induced type I IFN prevents diabetes caused by a β cell–tropic virus in mice

  • Text
  • PDF
Abstract

Viral infections have been linked to the onset of type I diabetes (T1D), with viruses postulated to induce disease directly by causing β cell injury and subsequent release of autoantigens and indirectly via the host type I interferon (IFN-I) response triggered by the virus. Consistent with this, resistance to T1D is associated with polymorphisms that impair the function of melanoma differentiation associated gene-5 (MDA5), a sensor of viral RNA that elicits IFN-I responses. In animal models, triggering of another viral sensor, TLR3, has been implicated in diabetes. Here, we found that MDA5 and TLR3 are both required to prevent diabetes in mice infected with encephalomyocarditis virus strain D (EMCV-D), which has tropism for the insulin-producing β cells of the pancreas. Infection of Tlr3–/– mice caused diabetes due to impaired IFN-I responses and virus-induced β cell damage rather than T cell–mediated autoimmunity. Mice lacking just 1 copy of Mda5 developed transient hyperglycemia when infected with EMCV-D, whereas homozygous Mda5–/– mice developed severe cardiac pathology. TLR3 and MDA5 controlled EMCV-D infection and diabetes by acting in hematopoietic and stromal cells, respectively, inducing IFN-I responses at kinetically distinct time points. We therefore conclude that optimal functioning of viral sensors and prompt IFN-I responses are required to prevent diabetes when caused by a virus that infects and damages the β cells of the pancreas.

Authors

Stephen A. McCartney, William Vermi, Silvia Lonardi, Cristina Rossini, Karel Otero, Boris Calderon, Susan Gilfillan, Michael S. Diamond, Emil R. Unanue, Marco Colonna

×

IL-2 induces a WAVE2-dependent pathway for actin reorganization that enables WASp-independent human NK cell function
Jordan S. Orange, Sumita Roy-Ghanta, Emily M. Mace, Saumya Maru, Gregory D. Rak, Keri B. Sanborn, Anders Fasth, Rushani Saltzman, Allison Paisley, Linda Monaco-Shawver, Pinaki P. Banerjee, Rahul Pandey
Jordan S. Orange, Sumita Roy-Ghanta, Emily M. Mace, Saumya Maru, Gregory D. Rak, Keri B. Sanborn, Anders Fasth, Rushani Saltzman, Allison Paisley, Linda Monaco-Shawver, Pinaki P. Banerjee, Rahul Pandey
View: Text | PDF

IL-2 induces a WAVE2-dependent pathway for actin reorganization that enables WASp-independent human NK cell function

  • Text
  • PDF
Abstract

Wiskott-Aldrich syndrome (WAS) is a primary immunodeficiency associated with an increased susceptibility to herpesvirus infection and hematologic malignancy as well as a deficiency of NK cell function. It is caused by defective WAS protein (WASp). WASp facilitates filamentous actin (F-actin) branching and is required for F-actin accumulation at the NK cell immunological synapse and NK cell cytotoxicity ex vivo. Importantly, the function of WASp-deficient NK cells can be restored in vitro after exposure to IL-2, but the mechanisms underlying this remain unknown. Using a WASp inhibitor as well as cells from patients with WAS, we have defined a direct effect of IL-2 signaling upon F-actin that is independent of WASp function. We found that IL-2 treatment of a patient with WAS enhanced the cytotoxicity of their NK cells and the F-actin content at the immunological synapses formed by their NK cells. IL-2 stimulation of NK cells in vitro activated the WASp homolog WAVE2, which was required for inducing WASp-independent NK cell function, but not for baseline activity. Thus, WAVE2 and WASp define parallel pathways to F-actin reorganization and function in human NK cells; although WAVE2 was not required for NK cell innate function, it was accessible through adaptive immunity via IL-2. These results demonstrate how overlapping cytoskeletal activities can utilize immunologically distinct pathways to achieve synonymous immune function.

Authors

Jordan S. Orange, Sumita Roy-Ghanta, Emily M. Mace, Saumya Maru, Gregory D. Rak, Keri B. Sanborn, Anders Fasth, Rushani Saltzman, Allison Paisley, Linda Monaco-Shawver, Pinaki P. Banerjee, Rahul Pandey

×

Mouse and human iNKT cell agonist β-mannosylceramide reveals a distinct mechanism of tumor immunity
Jessica J. O’Konek, Petr Illarionov, Deborah Stewart Khursigara, Elena Ambrosino, Liat Izhak, Bernard F. Castillo II, Ravinder Raju, Maryam Khalili, Hee-Yong Kim, Amy R. Howell, Gurdyal S. Besra, Steven A. Porcelli, Jay A. Berzofsky, Masaki Terabe
Jessica J. O’Konek, Petr Illarionov, Deborah Stewart Khursigara, Elena Ambrosino, Liat Izhak, Bernard F. Castillo II, Ravinder Raju, Maryam Khalili, Hee-Yong Kim, Amy R. Howell, Gurdyal S. Besra, Steven A. Porcelli, Jay A. Berzofsky, Masaki Terabe
View: Text | PDF

Mouse and human iNKT cell agonist β-mannosylceramide reveals a distinct mechanism of tumor immunity

  • Text
  • PDF
Abstract

Type 1 or invariant NKT (iNKT) cell agonists, epitomized by α-galactosylceramide, protect against cancer largely by IFN-γ–dependent mechanisms. Here we describe what we believe to be a novel IFN-γ–independent mechanism induced by β-mannosylceramide, which also defines a potentially new class of iNKT cell agonist, with an unusual β-linked sugar. Like α-galactosylceramide, β-mannosylceramide directly activates iNKT cells from both mice and humans. In contrast to α-galactosylceramide, protection by β-mannosylceramide was completely dependent on NOS and TNF-α, neither of which was required to achieve protection with α-galactosylceramide. Moreover, at doses too low for either alone to protect, β-mannosylceramide synergized with α-galactosylceramide to protect mice against tumors. These results suggest that treatment with β-mannosylceramide provides a distinct mechanism of tumor protection that may allow efficacy where other agonists have failed. Furthermore, the ability of β-mannosylceramide to synergize with α-galactosylceramide suggests treatment with this class of iNKT agonist may provide protection against tumors in humans.

Authors

Jessica J. O’Konek, Petr Illarionov, Deborah Stewart Khursigara, Elena Ambrosino, Liat Izhak, Bernard F. Castillo II, Ravinder Raju, Maryam Khalili, Hee-Yong Kim, Amy R. Howell, Gurdyal S. Besra, Steven A. Porcelli, Jay A. Berzofsky, Masaki Terabe

×

Pro-resolving actions and stereoselective biosynthesis of 18S E-series resolvins in human leukocytes and murine inflammation
Sungwhan F. Oh, Padmini S. Pillai, Antonio Recchiuti, Rong Yang, Charles N. Serhan
Sungwhan F. Oh, Padmini S. Pillai, Antonio Recchiuti, Rong Yang, Charles N. Serhan
View: Text | PDF

Pro-resolving actions and stereoselective biosynthesis of 18S E-series resolvins in human leukocytes and murine inflammation

  • Text
  • PDF
Abstract

E-series resolvins are antiinflammatory and pro-resolving lipid mediators derived from the ω-3 polyunsaturated fatty acid eicosapentaenoic acid (EPA) that actively clear inflammation to promote tissue homeostasis. Aspirin, in addition to exerting antithrombotic actions, also triggers the biosynthesis of these specialized pro-resolving mediators. Here, we used metabolomic profiling to investigate the biosynthesis of E-series resolvins with specific chiral chemistry in serum from human subjects and present evidence for new 18S series resolvins. Aspirin increased endogenous formation of 18S-hydroxyeicosapentaenoate (18S-HEPE) compared with 18R-HEPE, a known resolvin precursor. Human recombinant 5-lipoxygenase used both enantiomers as substrates, and recombinant LTA4 hydrolase (LTA4H) converted chiral 5S(6)-epoxide–containing intermediates to resolvin E1 and 18S-resolvin E1 (RvE1 and 18S-RvE1, respectively). 18S-RvE1 bound to the leukocyte GPCRs ChemR23 and BLT1 with increased affinity and potency compared with the R-epimer, but was more rapidly inactivated than RvE1 by dehydrogenase. Like RvE1, 18S-RvE1 enhanced macrophage phagocytosis of zymosan, E. coli, and apoptotic neutrophils and reduced both neutrophil infiltration and proinflammatory cytokines in murine peritonitis. These results demonstrate two parallel stereospecific pathways in the biosynthesis of E-series resolvins, 18R- and 18S-, which are antiinflammatory, pro-resolving, and non-phlogistic and may contribute to the beneficial actions of aspirin and ω-3 polyunsaturated fatty acids.

Authors

Sungwhan F. Oh, Padmini S. Pillai, Antonio Recchiuti, Rong Yang, Charles N. Serhan

×
  • ← Previous
  • 1
  • 2
  • …
  • 111
  • 112
  • 113
  • …
  • 145
  • 146
  • Next →
Exosome delivery promotes allograft rejection
Quan Lui and colleagues reveal that delivery of donor MHC-containing exosomes from donor DCs to recipient DCs drive allograft-targeting immune responses…
Published June 27, 2016
Scientific Show StopperImmunology

Helminth co-infection exacerbates tuberculosis
Leticia Monin and colleagues provide insight how helminth co-infection drives increased susceptibility to severe tuberculosis...
Published November 16, 2015
Scientific Show StopperImmunology

Directing T cell traffic
Yanping Huang and colleagues demonstrate that CRK and CRKL regulate T cell trafficking and T cells lacking these adapter proteins do not home to sites of inflammation….
Published January 26, 2015
Scientific Show StopperImmunology
Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts