Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
The majority of intestinal IgA+ and IgG+ plasmablasts in the human gut are antigen-specific
Julia Benckert, … , Bertram Wiedenmann, Hedda Wardemann
Julia Benckert, … , Bertram Wiedenmann, Hedda Wardemann
Published April 1, 2011
Citation Information: J Clin Invest. 2011;121(5):1946-1955. https://doi.org/10.1172/JCI44447.
View: Text | PDF
Research Article Immunology

The majority of intestinal IgA+ and IgG+ plasmablasts in the human gut are antigen-specific

  • Text
  • PDF
Abstract

Mucosal antibody responses play a major role in mediating homeostasis with the intestinal flora. It has been suggested that imbalance in the IgA+ and IgG+ intestinal B cell repertoire may be associated with the development of diseases such as inflammatory bowel disease. Despite this, little is known about the antibody specificity of human intestinal plasmablasts. Here, we have determined the reactivity profile of single isolated IgA+ and IgG+ plasmablasts from human terminal ileum using antibody cloning and in vitro expression. We found that approximately 25% of intestinal IgA and IgG plasmablast antibodies were polyreactive; the majority were antigen-specific. Antigen specificity was not only directed against enteropathogenic microbes but also against commensal microbes and self antigens. Regardless of their reactivity, all intestinal antibodies were somatically mutated and showed signs of antigen-mediated selection, suggesting that they developed from antigen-specific B cell responses. Together, our data indicate that antigen-specific immune responses to intestinal microbes are largely responsible for the maintenance of intestinal homeostasis and thus provide a basis for understanding the deregulated immune responses observed in patients with inflammatory bowel disease.

Authors

Julia Benckert, Nina Schmolka, Cornelia Kreschel, Markus Josef Zoller, Andreas Sturm, Bertram Wiedenmann, Hedda Wardemann

×

Figure 1

Ig gene analysis of intestinal IgA+ and IgG+ plasmablasts.

Options: View larger image (or click on image) Download as PowerPoint

Ig gene analysis of intestinal IgA+ and IgG+ plasmablasts.
   
The IGH ...
The IGH gene sequences of IgA+ and IgG+ plasmablasts from the terminal ileum of HD1–HD3 were analyzed for (A) isotype subclass usage, (B) frequency of replacement (black) and silent (white) mutations in FWRs and CDRs, (C) absolute number of somatic mutations in V genes, (D) clonal relationships, (E) IGH V family and J gene usage and IgH CDR3 aa length and positive charges, and (F) IGK and IGL V family and J gene usage. The absolute number of sequences analyzed is indicated over each graph. Error bars in bar graphs indicate standard deviation of means for individual patients. Average means of IgH CDR3 length and of V gene somatic mutations are indicated by horizontal lines in the respective graphs. Gray bars indicate standard deviation of means of individual donors (each donor is indicated by an individual symbol). The number of tested antibodies is indicated in the pie chart center. Shaded areas in pie charts indicate clonally related sequences. P values were calculated to compare data from IgA and IgG plasmablasts but did not reach values below 0.05 and thus are not indicated.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts