Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Immunology

  • 1,456 Articles
  • 3 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 109
  • 110
  • 111
  • …
  • 145
  • 146
  • Next →
The multistage vaccine H56 boosts the effects of BCG to protect cynomolgus macaques against active tuberculosis and reactivation of latent Mycobacterium tuberculosis infection
Philana Ling Lin, Jes Dietrich, Esterlina Tan, Rodolfo M. Abalos, Jasmin Burgos, Carolyn Bigbee, Matthew Bigbee, Leslie Milk, Hannah P. Gideon, Mark Rodgers, Catherine Cochran, Kristi M. Guinn, David R. Sherman, Edwin Klein, Christopher Janssen, JoAnne L. Flynn, Peter Andersen
Philana Ling Lin, Jes Dietrich, Esterlina Tan, Rodolfo M. Abalos, Jasmin Burgos, Carolyn Bigbee, Matthew Bigbee, Leslie Milk, Hannah P. Gideon, Mark Rodgers, Catherine Cochran, Kristi M. Guinn, David R. Sherman, Edwin Klein, Christopher Janssen, JoAnne L. Flynn, Peter Andersen
View: Text | PDF

The multistage vaccine H56 boosts the effects of BCG to protect cynomolgus macaques against active tuberculosis and reactivation of latent Mycobacterium tuberculosis infection

  • Text
  • PDF
Abstract

It is estimated that one-third of the world’s population is infected with Mycobacterium tuberculosis. Infection typically remains latent, but it can reactivate to cause clinical disease. The only vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG), is largely ineffective, and ways to enhance its efficacy are being developed. Of note, the candidate booster vaccines currently under clinical development have been designed to improve BCG efficacy but not prevent reactivation of latent infection. Here, we demonstrate that administering a multistage vaccine that we term H56 in the adjuvant IC31 as a boost to vaccination with BCG delays and reduces clinical disease in cynomolgus macaques challenged with M. tuberculosis and prevents reactivation of latent infection. H56 contains Ag85B and ESAT-6, which are two of the M. tuberculosis antigens secreted in the acute phase of infection, and the nutrient stress–induced antigen Rv2660c. Boosting with H56/IC31 resulted in efficient containment of M. tuberculosis infection and reduced rates of clinical disease, as measured by clinical parameters, inflammatory markers, and improved survival of the animals compared with BCG alone. Boosted animals showed reduced pulmonary pathology and extrapulmonary dissemination, and protection correlated with a strong recall response against ESAT-6 and Rv2660c. Importantly, BCG/H56-vaccinated monkeys did not reactivate latent infection after treatment with anti-TNF antibody. Our results indicate that H56/IC31 boosting is able to control late-stage infection with M. tuberculosis and contain latent tuberculosis, providing a rationale for the clinical development of H56.

Authors

Philana Ling Lin, Jes Dietrich, Esterlina Tan, Rodolfo M. Abalos, Jasmin Burgos, Carolyn Bigbee, Matthew Bigbee, Leslie Milk, Hannah P. Gideon, Mark Rodgers, Catherine Cochran, Kristi M. Guinn, David R. Sherman, Edwin Klein, Christopher Janssen, JoAnne L. Flynn, Peter Andersen

×

Histamine-releasing factor has a proinflammatory role in mouse models of asthma and allergy
Jun-ichi Kashiwakura, Tomoaki Ando, Kenji Matsumoto, Miho Kimura, Jiro Kitaura, Michael H. Matho, Dirk M. Zajonc, Tomomitsu Ozeki, Chisei Ra, Susan M. MacDonald, Reuben P. Siraganian, David H. Broide, Yuko Kawakami, Toshiaki Kawakami
Jun-ichi Kashiwakura, Tomoaki Ando, Kenji Matsumoto, Miho Kimura, Jiro Kitaura, Michael H. Matho, Dirk M. Zajonc, Tomomitsu Ozeki, Chisei Ra, Susan M. MacDonald, Reuben P. Siraganian, David H. Broide, Yuko Kawakami, Toshiaki Kawakami
View: Text | PDF

Histamine-releasing factor has a proinflammatory role in mouse models of asthma and allergy

  • Text
  • PDF
Abstract

IgE-mediated activation of mast cells and basophils underlies allergic diseases such as asthma. Histamine-releasing factor (HRF; also known as translationally controlled tumor protein [TCTP] and fortilin) has been implicated in late-phase allergic reactions (LPRs) and chronic allergic inflammation, but its functions during asthma are not well understood. Here, we identified a subset of IgE and IgG antibodies as HRF-interacting molecules in vitro. HRF was able to dimerize and bind to Igs via interactions of its N-terminal and internal regions with the Fab region of Igs. Therefore, HRF together with HRF-reactive IgE was able to activate mast cells in vitro. In mouse models of asthma and allergy, Ig-interacting HRF peptides that were shown to block HRF/Ig interactions in vitro inhibited IgE/HRF-induced mast cell activation and in vivo cutaneous anaphylaxis and airway inflammation. Intranasally administered HRF recruited inflammatory immune cells to the lung in naive mice in a mast cell– and Fc receptor–dependent manner. These results indicate that HRF has a proinflammatory role in asthma and skin immediate hypersensitivity, leading us to suggest HRF as a potential therapeutic target.

Authors

Jun-ichi Kashiwakura, Tomoaki Ando, Kenji Matsumoto, Miho Kimura, Jiro Kitaura, Michael H. Matho, Dirk M. Zajonc, Tomomitsu Ozeki, Chisei Ra, Susan M. MacDonald, Reuben P. Siraganian, David H. Broide, Yuko Kawakami, Toshiaki Kawakami

×

Herpes simplex encephalitis in children with autosomal recessive and dominant TRIF deficiency
Vanessa Sancho-Shimizu, Rebeca Pérez de Diego, Lazaro Lorenzo, Rabih Halwani, Abdullah Alangari, Elisabeth Israelsson, Sylvie Fabrega,, Annabelle Cardon, Jerome Maluenda, Megumi Tatematsu, Farhad Mahvelati, Melina Herman, Michael Ciancanelli, Yiqi Guo, Zobaida AlSum, Nouf Alkhamis, Abdulkarim S. Al-Makadma, Ata Ghadiri, Soraya Boucherit, Sabine Plancoulaine, Capucine Picard, Flore Rozenberg, Marc Tardieu, Pierre Lebon, Emmanuelle Jouanguy, Nima Rezaei, Tsukasa Seya, Misako Matsumoto, Damien Chaussabel, Anne Puel, Shen-Ying Zhang, Laurent Abel, Saleh Al-Muhsen, Jean-Laurent Casanova
Vanessa Sancho-Shimizu, Rebeca Pérez de Diego, Lazaro Lorenzo, Rabih Halwani, Abdullah Alangari, Elisabeth Israelsson, Sylvie Fabrega,, Annabelle Cardon, Jerome Maluenda, Megumi Tatematsu, Farhad Mahvelati, Melina Herman, Michael Ciancanelli, Yiqi Guo, Zobaida AlSum, Nouf Alkhamis, Abdulkarim S. Al-Makadma, Ata Ghadiri, Soraya Boucherit, Sabine Plancoulaine, Capucine Picard, Flore Rozenberg, Marc Tardieu, Pierre Lebon, Emmanuelle Jouanguy, Nima Rezaei, Tsukasa Seya, Misako Matsumoto, Damien Chaussabel, Anne Puel, Shen-Ying Zhang, Laurent Abel, Saleh Al-Muhsen, Jean-Laurent Casanova
View: Text | PDF

Herpes simplex encephalitis in children with autosomal recessive and dominant TRIF deficiency

  • Text
  • PDF
Abstract

Herpes simplex encephalitis (HSE) is the most common sporadic viral encephalitis of childhood. Autosomal recessive (AR) UNC-93B and TLR3 deficiencies and autosomal dominant (AD) TLR3 and TRAF3 deficiencies underlie HSE in some children. We report here unrelated HSE children with AR or AD TRIF deficiency. The AR form of the disease was found to be due to a homozygous nonsense mutation that resulted in a complete absence of the TRIF protein. Both the TLR3- and the TRIF-dependent TLR4 signaling pathways were abolished. The AD form of disease was found to be due to a heterozygous missense mutation, resulting in a dysfunctional protein. In this form of the disease, the TLR3 signaling pathway was impaired, whereas the TRIF-dependent TLR4 pathway was unaffected. Both patients, however, showed reduced capacity to respond to stimulation of the DExD/H-box helicases pathway. To date, the TRIF-deficient patients with HSE described herein have suffered from no other infections. Moreover, as observed in patients with other genetic etiologies of HSE, clinical penetrance was found to be incomplete, as some HSV-1–infected TRIF-deficient relatives have not developed HSE. Our results provide what we believe to be the first description of human TRIF deficiency and a new genetic etiology for HSE. They suggest that the TRIF-dependent TLR4 and DExD/H-box helicase pathways are largely redundant in host defense. They further demonstrate the importance of TRIF for the TLR3-dependent production of antiviral IFNs in the CNS during primary infection with HSV-1 in childhood.

Authors

Vanessa Sancho-Shimizu, Rebeca Pérez de Diego, Lazaro Lorenzo, Rabih Halwani, Abdullah Alangari, Elisabeth Israelsson, Sylvie Fabrega,, Annabelle Cardon, Jerome Maluenda, Megumi Tatematsu, Farhad Mahvelati, Melina Herman, Michael Ciancanelli, Yiqi Guo, Zobaida AlSum, Nouf Alkhamis, Abdulkarim S. Al-Makadma, Ata Ghadiri, Soraya Boucherit, Sabine Plancoulaine, Capucine Picard, Flore Rozenberg, Marc Tardieu, Pierre Lebon, Emmanuelle Jouanguy, Nima Rezaei, Tsukasa Seya, Misako Matsumoto, Damien Chaussabel, Anne Puel, Shen-Ying Zhang, Laurent Abel, Saleh Al-Muhsen, Jean-Laurent Casanova

×

CX3CR1 regulates intestinal macrophage homeostasis, bacterial translocation, and colitogenic Th17 responses in mice
Oscar Medina-Contreras, Duke Geem, Oskar Laur, Ifor R. Williams, Sergio A. Lira, Asma Nusrat, Charles A. Parkos, Timothy L. Denning
Oscar Medina-Contreras, Duke Geem, Oskar Laur, Ifor R. Williams, Sergio A. Lira, Asma Nusrat, Charles A. Parkos, Timothy L. Denning
View: Text | PDF

CX3CR1 regulates intestinal macrophage homeostasis, bacterial translocation, and colitogenic Th17 responses in mice

  • Text
  • PDF
Abstract

The two most common forms of inflammatory bowel disease (IBD), Crohn’s disease and ulcerative colitis, affect approximately 1 million people in the United States. Uncontrolled APC reactivity toward commensal bacteria is implicated in the pathogenesis of the disease. A number of functionally distinct APC populations exist in the mucosal lamina propria (LP) below the intestinal epithelium, but their relative contributions to inflammation remain unclear. Here, we demonstrate in mice important roles for the chemokine receptor CX3CR1 in maintaining LP macrophage populations, preventing translocation of commensal bacteria to mesenteric lymph nodes (mLNs), and limiting colitogenic Th17 responses. CX3CR1 was found to be expressed in resident LP macrophages (defined as CD11b+F4/80+) but not DCs (defined as CD11c+CD103+). LP macrophage frequency and number were decreased in two strains of CX3CR1-knockout mice and in mice deficient in the CX3CR1 ligand CX3CL1. All these knockout strains displayed markedly increased translocation of commensal bacteria to mLNs. Additionally, the severity of DSS-induced colitis was dramatically enhanced in the knockout mice as compared with controls. Disease severity could be limited by either administration of neutralizing IL-17A antibodies or transfer of CX3CR1-sufficient macrophages. Our data thus suggest key roles for the CX3CR1/CX3CL1 axis in the intestinal mucosa; further clarification of CX3CR1 function will likely direct efforts toward therapeutic intervention for mucosal inflammatory disorders such as IBD.

Authors

Oscar Medina-Contreras, Duke Geem, Oskar Laur, Ifor R. Williams, Sergio A. Lira, Asma Nusrat, Charles A. Parkos, Timothy L. Denning

×

NF-κB–inducing kinase plays an essential T cell–intrinsic role in graft-versus-host disease and lethal autoimmunity in mice
Susan E. Murray, Fanny Polesso, Alexander M. Rowe, Soumen Basak, Yoshinobu Koguchi, Katelynne Gardner Toren, Alexander Hoffmann, David C. Parker
Susan E. Murray, Fanny Polesso, Alexander M. Rowe, Soumen Basak, Yoshinobu Koguchi, Katelynne Gardner Toren, Alexander Hoffmann, David C. Parker
View: Text | PDF

NF-κB–inducing kinase plays an essential T cell–intrinsic role in graft-versus-host disease and lethal autoimmunity in mice

  • Text
  • PDF
Abstract

NF-κB–inducing kinase (NIK) is an essential upstream kinase in noncanonical NF-κB signaling. NIK-dependent NF-κB activation downstream of several TNF receptor family members mediates lymphoid organ development and B cell homeostasis. Peripheral T cell populations are normal in the absence of NIK, but the role of NIK during in vivo T cell responses to antigen has been obscured by other developmental defects in NIK-deficient mice. Here, we have identified a T cell–intrinsic requirement for NIK in graft-versus-host disease (GVHD), wherein NIK-deficient mouse T cells transferred into MHC class II mismatched recipients failed to cause GVHD. Although NIK was not necessary for antigen receptor signaling, it was absolutely required for costimulation through the TNF receptor family member OX40 (also known as CD134). When we conditionally overexpressed NIK in T cells, mice suffered rapid and fatal autoimmunity characterized by hyperactive effector T cells and poorly suppressive Foxp3+ Tregs. Together, these data illuminate a critical T cell–intrinsic role for NIK during immune responses and suggest that its tight regulation is critical for avoiding autoimmunity.

Authors

Susan E. Murray, Fanny Polesso, Alexander M. Rowe, Soumen Basak, Yoshinobu Koguchi, Katelynne Gardner Toren, Alexander Hoffmann, David C. Parker

×

The protective role of TLR6 in a mouse model of asthma is mediated by IL-23 and IL-17A
Ana Paula Moreira, Karen A. Cavassani, Ugur B. Ismailoglu, Rikki Hullinger, Michael P. Dunleavy, Darryl A. Knight, Steven L. Kunkel, Satoshi Uematsu, Shizuo Akira, Cory M. Hogaboam
Ana Paula Moreira, Karen A. Cavassani, Ugur B. Ismailoglu, Rikki Hullinger, Michael P. Dunleavy, Darryl A. Knight, Steven L. Kunkel, Satoshi Uematsu, Shizuo Akira, Cory M. Hogaboam
View: Text | PDF

The protective role of TLR6 in a mouse model of asthma is mediated by IL-23 and IL-17A

  • Text
  • PDF
Abstract

TLRs are a family of receptors that mediate immune system pathogen recognition. In the respiratory system, TLR activation has both beneficial and deleterious effects in asthma. For example, clinical data indicate that TLR6 activation exerts protective effects in asthma. Here, we explored the mechanism or mechanisms through which TLR6 mediates this effect using mouse models of Aspergillus fumigatus–induced and house dust mite antigen–induced (HDM antigen–induced) chronic asthma. Tlr6–/– mice with fungal- or HDM antigen–induced asthma exhibited substantially increased airway hyperresponsiveness, inflammation, and remodeling compared with WT asthmatic groups. Surprisingly, whole-lung levels of IL-23 and IL-17 were markedly lower in Tlr6–/– versus WT asthmatic mice. Tlr6–/– DCs generated less IL-23 upon activation with lipopolysaccharide, zymosan, or curdlan. Impaired IL-23 generation in Tlr6–/– mice also corresponded with lower levels of expression of the pathogen-recognition receptor dectin-1 and expansion of Th17 cells both in vivo and in vitro. Exogenous IL-23 treatment of asthmatic Tlr6–/– mice restored IL-17A production and substantially reduced airway hyperresponsiveness, inflammation, and lung fungal burden compared with that in untreated asthmatic Tlr6–/– mice. Together, our data demonstrate that TLR6 activation is critical for IL-23 production and Th17 responses, which both regulate the allergic inflammatory response in chronic fungal-induced asthma. Thus, therapeutics targeting TLR6 activity might prove efficacious in the treatment of clinical asthma.

Authors

Ana Paula Moreira, Karen A. Cavassani, Ugur B. Ismailoglu, Rikki Hullinger, Michael P. Dunleavy, Darryl A. Knight, Steven L. Kunkel, Satoshi Uematsu, Shizuo Akira, Cory M. Hogaboam

×

GATA3 controls Foxp3+ regulatory T cell fate during inflammation in mice
Elizabeth A. Wohlfert, John R. Grainger, Nicolas Bouladoux, Joanne E. Konkel, Guillaume Oldenhove, Carolina Hager Ribeiro, Jason A. Hall, Ryoji Yagi, Shruti Naik, Ravikiran Bhairavabhotla, William E. Paul, Remy Bosselut, Gang Wei, Keji Zhao, Mohamed Oukka, Jinfang Zhu, Yasmine Belkaid
Elizabeth A. Wohlfert, John R. Grainger, Nicolas Bouladoux, Joanne E. Konkel, Guillaume Oldenhove, Carolina Hager Ribeiro, Jason A. Hall, Ryoji Yagi, Shruti Naik, Ravikiran Bhairavabhotla, William E. Paul, Remy Bosselut, Gang Wei, Keji Zhao, Mohamed Oukka, Jinfang Zhu, Yasmine Belkaid
View: Text | PDF

GATA3 controls Foxp3+ regulatory T cell fate during inflammation in mice

  • Text
  • PDF
Abstract

Tregs not only keep immune responses to autoantigens in check, but also restrain those directed toward pathogens and the commensal microbiota. Control of peripheral immune homeostasis by Tregs relies on their capacity to accumulate at inflamed sites and appropriately adapt to their local environment. To date, the factors involved in the control of these aspects of Treg physiology remain poorly understood. Here, we show that the canonical Th2 transcription factor GATA3 is selectively expressed in Tregs residing in barrier sites including the gastrointestinal tract and the skin. GATA3 expression in both murine and human Tregs was induced upon TCR and IL-2 stimulation. Although GATA3 was not required to sustain Treg homeostasis and function at steady state, GATA3 played a cardinal role in Treg physiology during inflammation. Indeed, the intrinsic expression of GATA3 by Tregs was required for their ability to accumulate at inflamed sites and to maintain high levels of Foxp3 expression in various polarized or inflammatory settings. Furthermore, our data indicate that GATA3 limits Treg polarization toward an effector T cell phenotype and acquisition of effector cytokines in inflamed tissues. Overall, our work reveals what we believe to be a new facet in the complex role of GATA3 in T cells and highlights what may be a fundamental role in controlling Treg physiology during inflammation.

Authors

Elizabeth A. Wohlfert, John R. Grainger, Nicolas Bouladoux, Joanne E. Konkel, Guillaume Oldenhove, Carolina Hager Ribeiro, Jason A. Hall, Ryoji Yagi, Shruti Naik, Ravikiran Bhairavabhotla, William E. Paul, Remy Bosselut, Gang Wei, Keji Zhao, Mohamed Oukka, Jinfang Zhu, Yasmine Belkaid

×

A high-throughput single-cell analysis of human CD8+ T cell functions reveals discordance for cytokine secretion and cytolysis
Navin Varadarajan, Boris Julg, Yvonne J. Yamanaka, Huabiao Chen, Adebola O. Ogunniyi, Elizabeth McAndrew, Lindsay C. Porter, Alicja Piechocka-Trocha, Brenna J. Hill, Daniel C. Douek, Florencia Pereyra, Bruce D. Walker, J. Christopher Love
Navin Varadarajan, Boris Julg, Yvonne J. Yamanaka, Huabiao Chen, Adebola O. Ogunniyi, Elizabeth McAndrew, Lindsay C. Porter, Alicja Piechocka-Trocha, Brenna J. Hill, Daniel C. Douek, Florencia Pereyra, Bruce D. Walker, J. Christopher Love
View: Text | PDF

A high-throughput single-cell analysis of human CD8+ T cell functions reveals discordance for cytokine secretion and cytolysis

  • Text
  • PDF
Abstract

CD8+ T cells are a key component of the adaptive immune response to viral infection. An inadequate CD8+ T cell response is thought to be partly responsible for the persistent chronic infection that arises following infection with HIV. It is therefore critical to identify ways to define what constitutes an adequate or inadequate response. IFN-γ production has been used as a measure of T cell function, but the relationship between cytokine production and the ability of a cell to lyse virus-infected cells is not clear. Moreover, the ability to assess multiple CD8+ T cell functions with single-cell resolution using freshly isolated blood samples, and subsequently to recover these cells for further functional analyses, has not been achieved. As described here, to address this need, we have developed a high-throughput, automated assay in 125-pl microwells to simultaneously evaluate the ability of thousands of individual CD8+ T cells from HIV-infected patients to mediate lysis and to produce cytokines. This concurrent, direct analysis enabled us to investigate the correlation between immediate cytotoxic activity and short-term cytokine secretion. The majority of in vivo primed, circulating HIV-specific CD8+ T cells were discordant for cytolysis and cytokine secretion, notably IFN-γ, when encountering cognate antigen presented on defined numbers of cells. Our approach should facilitate determination of signatures of functional variance among individual effector CD8+ T cells, including those from mucosal samples and those induced by vaccines.

Authors

Navin Varadarajan, Boris Julg, Yvonne J. Yamanaka, Huabiao Chen, Adebola O. Ogunniyi, Elizabeth McAndrew, Lindsay C. Porter, Alicja Piechocka-Trocha, Brenna J. Hill, Daniel C. Douek, Florencia Pereyra, Bruce D. Walker, J. Christopher Love

×

Complement component 5 contributes to poor disease outcome in humans and mice with pneumococcal meningitis
Bianca Woehrl, Matthijs C. Brouwer, Carmen Murr, Sebastiaan G.B. Heckenberg, Frank Baas, Hans W. Pfister, Aeilko H. Zwinderman, B. Paul Morgan, Scott R. Barnum, Arie van der Ende, Uwe Koedel, Diederik van de Beek
Bianca Woehrl, Matthijs C. Brouwer, Carmen Murr, Sebastiaan G.B. Heckenberg, Frank Baas, Hans W. Pfister, Aeilko H. Zwinderman, B. Paul Morgan, Scott R. Barnum, Arie van der Ende, Uwe Koedel, Diederik van de Beek
View: Text | PDF

Complement component 5 contributes to poor disease outcome in humans and mice with pneumococcal meningitis

  • Text
  • PDF
Abstract

Pneumococcal meningitis is the most common and severe form of bacterial meningitis. Fatality rates are substantial, and long-term sequelae develop in about half of survivors. Disease outcome has been related to the severity of the proinflammatory response in the subarachnoid space. The complement system, which mediates key inflammatory processes, has been implicated as a modulator of pneumococcal meningitis disease severity in animal studies. Additionally, SNPs in genes encoding complement pathway proteins have been linked to susceptibility to pneumococcal infection, although no associations with disease severity or outcome have been established. Here, we have performed a robust prospective nationwide genetic association study in patients with bacterial meningitis and found that a common nonsynonymous complement component 5 (C5) SNP (rs17611) is associated with unfavorable disease outcome. C5 fragment levels in cerebrospinal fluid (CSF) of patients with bacterial meningitis correlated with several clinical indicators of poor prognosis. Consistent with these human data, C5a receptor–deficient mice with pneumococcal meningitis had lower CSF wbc counts and decreased brain damage compared with WT mice. Adjuvant treatment with C5-specific monoclonal antibodies prevented death in all mice with pneumococcal meningitis. Thus, our results suggest C5-specific monoclonal antibodies could be a promising new antiinflammatory adjuvant therapy for pneumococcal meningitis.

Authors

Bianca Woehrl, Matthijs C. Brouwer, Carmen Murr, Sebastiaan G.B. Heckenberg, Frank Baas, Hans W. Pfister, Aeilko H. Zwinderman, B. Paul Morgan, Scott R. Barnum, Arie van der Ende, Uwe Koedel, Diederik van de Beek

×

IL-6 trans-signaling licenses mouse and human tumor microvascular gateways for trafficking of cytotoxic T cells
Daniel T. Fisher, Qing Chen, Joseph J. Skitzki, Jason B. Muhitch, Lei Zhou, Michelle M. Appenheimer, Trupti D. Vardam, Emily L. Weis, Jessica Passanese, Wan-Chao Wang, Sandra O. Gollnick, Mark W. Dewhirst, Stefan Rose-John, Elizabeth A. Repasky, Heinz Baumann, Sharon S. Evans
Daniel T. Fisher, Qing Chen, Joseph J. Skitzki, Jason B. Muhitch, Lei Zhou, Michelle M. Appenheimer, Trupti D. Vardam, Emily L. Weis, Jessica Passanese, Wan-Chao Wang, Sandra O. Gollnick, Mark W. Dewhirst, Stefan Rose-John, Elizabeth A. Repasky, Heinz Baumann, Sharon S. Evans
View: Text | PDF

IL-6 trans-signaling licenses mouse and human tumor microvascular gateways for trafficking of cytotoxic T cells

  • Text
  • PDF
Abstract

Immune cells are key regulators of neoplastic progression, which is often mediated through their release of cytokines. Inflammatory cytokines such as IL-6 exert tumor-promoting activities by driving growth and survival of neoplastic cells. However, whether these cytokines also have a role in recruiting mediators of adaptive anticancer immunity has not been investigated. Here, we report that homeostatic trafficking of tumor-reactive CD8+ T cells across microvascular checkpoints is limited in tumors despite the presence of inflammatory cytokines. Intravital imaging in tumor-bearing mice revealed that systemic thermal therapy (core temperature elevated to 39.5°C ± 0.5°C for 6 hours) activated an IL-6 trans-signaling program in the tumor blood vessels that modified the vasculature such that it could support enhanced trafficking of CD8+ effector/memory T cells (Tems) into tumors. A concomitant decrease in tumor infiltration by Tregs during systemic thermal therapy resulted in substantial enhancement of Tem/Treg ratios. Mechanistically, IL-6 produced by nonhematopoietic stromal cells acted cooperatively with soluble IL-6 receptor–α and thermally induced gp130 to promote E/P-selectin– and ICAM-1–dependent extravasation of cytotoxic T cells in tumors. Parallel increases in vascular adhesion were induced by IL-6/soluble IL-6 receptor–α fusion protein in mouse tumors and patient tumor explants. Finally, a causal link was established between IL-6–dependent licensing of tumor vessels for Tem trafficking and apoptosis of tumor targets. These findings suggest that the unique IL-6–rich tumor microenvironment can be exploited to create a therapeutic window to boost T cell–mediated antitumor immunity and immunotherapy.

Authors

Daniel T. Fisher, Qing Chen, Joseph J. Skitzki, Jason B. Muhitch, Lei Zhou, Michelle M. Appenheimer, Trupti D. Vardam, Emily L. Weis, Jessica Passanese, Wan-Chao Wang, Sandra O. Gollnick, Mark W. Dewhirst, Stefan Rose-John, Elizabeth A. Repasky, Heinz Baumann, Sharon S. Evans

×
  • ← Previous
  • 1
  • 2
  • …
  • 109
  • 110
  • 111
  • …
  • 145
  • 146
  • Next →
Exosome delivery promotes allograft rejection
Quan Lui and colleagues reveal that delivery of donor MHC-containing exosomes from donor DCs to recipient DCs drive allograft-targeting immune responses…
Published June 27, 2016
Scientific Show StopperImmunology

Helminth co-infection exacerbates tuberculosis
Leticia Monin and colleagues provide insight how helminth co-infection drives increased susceptibility to severe tuberculosis...
Published November 16, 2015
Scientific Show StopperImmunology

Directing T cell traffic
Yanping Huang and colleagues demonstrate that CRK and CRKL regulate T cell trafficking and T cells lacking these adapter proteins do not home to sites of inflammation….
Published January 26, 2015
Scientific Show StopperImmunology
Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts