Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Immunology

  • 1,456 Articles
  • 3 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 107
  • 108
  • 109
  • …
  • 145
  • 146
  • Next →
Human RHOH deficiency causes T cell defects and susceptibility to EV-HPV infections
Amandine Crequer, Anja Troeger, Etienne Patin, Cindy S. Ma, Capucine Picard, Vincent Pedergnana, Claire Fieschi, Annick Lim, Avinash Abhyankar, Laure Gineau, Ingrid Mueller-Fleckenstein, Monika Schmidt, Alain Taieb, James Krueger, Laurent Abel, Stuart G. Tangye, Gérard Orth, David A. Williams, Jean-Laurent Casanova, Emmanuelle Jouanguy
Amandine Crequer, Anja Troeger, Etienne Patin, Cindy S. Ma, Capucine Picard, Vincent Pedergnana, Claire Fieschi, Annick Lim, Avinash Abhyankar, Laure Gineau, Ingrid Mueller-Fleckenstein, Monika Schmidt, Alain Taieb, James Krueger, Laurent Abel, Stuart G. Tangye, Gérard Orth, David A. Williams, Jean-Laurent Casanova, Emmanuelle Jouanguy
View: Text | PDF

Human RHOH deficiency causes T cell defects and susceptibility to EV-HPV infections

  • Text
  • PDF
Abstract

Epidermodysplasia verruciformis (EV) is a rare genetic disorder characterized by increased susceptibility to specific human papillomaviruses, the betapapillomaviruses. These EV-HPVs cause warts and increase the risk of skin carcinomas in otherwise healthy individuals. Inactivating mutations in epidermodysplasia verruciformis 1 (EVER1) or EVER2 have been identified in most, but not all, patients with autosomal recessive EV. We found that 2 young adult siblings presenting with T cell deficiency and various infectious diseases, including persistent EV-HPV infections, were homozygous for a mutation creating a stop codon in the ras homolog gene family member H (RHOH) gene. RHOH encodes an atypical Rho GTPase expressed predominantly in hematopoietic cells. Patients’ circulating T cells contained predominantly effector memory T cells, which displayed impaired TCR signaling. Additionally, very few circulating T cells expressed the β7 integrin subunit, which homes T cells to specific tissues. Similarly, Rhoh-null mice exhibited a severe overall T cell defect and abnormally small numbers of circulating β7-positive cells. Expression of the WT, but not of the mutated RHOH, allele in Rhoh–/– hematopoietic stem cells corrected the T cell lymphopenia in mice after bone marrow transplantation. We conclude that RHOH deficiency leads to T cell defects and persistent EV-HPV infections, suggesting that T cells play a role in the pathogenesis of chronic EV-HPV infections.

Authors

Amandine Crequer, Anja Troeger, Etienne Patin, Cindy S. Ma, Capucine Picard, Vincent Pedergnana, Claire Fieschi, Annick Lim, Avinash Abhyankar, Laure Gineau, Ingrid Mueller-Fleckenstein, Monika Schmidt, Alain Taieb, James Krueger, Laurent Abel, Stuart G. Tangye, Gérard Orth, David A. Williams, Jean-Laurent Casanova, Emmanuelle Jouanguy

×

Viral acute lower respiratory infections impair CD8+ T cells through PD-1
John J. Erickson, Pavlo Gilchuk, Andrew K. Hastings, Sharon J. Tollefson, Monika Johnson, Melissa B. Downing, Kelli L. Boyd, Joyce E. Johnson, Annette S. Kim, Sebastian Joyce, John V. Williams
John J. Erickson, Pavlo Gilchuk, Andrew K. Hastings, Sharon J. Tollefson, Monika Johnson, Melissa B. Downing, Kelli L. Boyd, Joyce E. Johnson, Annette S. Kim, Sebastian Joyce, John V. Williams
View: Text | PDF

Viral acute lower respiratory infections impair CD8+ T cells through PD-1

  • Text
  • PDF
Abstract

Viruses are leading causes of severe acute lower respiratory infections (LRIs). These infections evoke incomplete immunity, as individuals can be repeatedly reinfected throughout life. We report that acute viral LRI causes rapid pulmonary CD8+ cytotoxic T lymphocyte (TCD8) functional impairment via programmed death–1/programmed death ligand–1 (PD-1/PD-L1) signaling, a pathway previously associated with prolonged antigenic stimulation during chronic infections and cancer. PD-1–mediated TCD8 impairment occurred acutely in mice following infection with human metapneumovirus or influenza virus. Viral antigen was sufficient for PD-1 upregulation, but induction of PD-L1 was required for impairment. During secondary viral infection or epitope-only challenge, memory TCD8 rapidly reexpressed PD-1 and exhibited severe functional impairment. Inhibition of PD-1 signaling using monoclonal antibody blockade prevented TCD8 impairment, reduced viral titers during primary infection, and enhanced protection of immunized mice against challenge infection. Additionally, PD-1 and PD-L1 were upregulated in the lungs of patients with 2009 H1N1 influenza virus, respiratory syncytial virus, or parainfluenza virus infection. These results indicate that PD-1 mediates TCD8 functional impairment during acute viral infection and may contribute to recurrent viral LRIs. Therefore, the PD-1/PD-L1 pathway may represent a therapeutic target in the treatment of respiratory viruses.

Authors

John J. Erickson, Pavlo Gilchuk, Andrew K. Hastings, Sharon J. Tollefson, Monika Johnson, Melissa B. Downing, Kelli L. Boyd, Joyce E. Johnson, Annette S. Kim, Sebastian Joyce, John V. Williams

×

Fungal antioxidant pathways promote survival against neutrophils during infection
Sixto M. Leal Jr., Chairut Vareechon, Susan Cowden, Brian A. Cobb, Jean-Paul Latgé, Michelle Momany, Eric Pearlman
Sixto M. Leal Jr., Chairut Vareechon, Susan Cowden, Brian A. Cobb, Jean-Paul Latgé, Michelle Momany, Eric Pearlman
View: Text | PDF

Fungal antioxidant pathways promote survival against neutrophils during infection

  • Text
  • PDF
Abstract

Filamentous fungi are a common cause of blindness and visual impairment worldwide. Using both murine model systems and in vitro human neutrophils, we found that NADPH oxidase produced by neutrophils was essential to control the growth of Aspergillus and Fusarium fungi in the cornea. We demonstrated that neutrophil oxidant production and antifungal activity are dependent on CD18, but not on the β-glucan receptor dectin-1. We used mutant A. fumigatus strains to show that the reactive oxygen species–sensing transcription factor Yap1, superoxide dismutases, and the Yap1-regulated thioredoxin antioxidant pathway are each required for protection against neutrophil-mediated oxidation of hyphae as well as optimal survival of fungal hyphae in vivo. We also demonstrated that thioredoxin inhibition using the anticancer drug PX-12 increased the sensitivity of fungal hyphae to both H2O2- and neutrophil-mediated killing in vitro. Additionally, topical application of PX-12 significantly enhanced neutrophil-mediated fungal killing in infected mouse corneas. Cumulatively, our data reveal critical host oxidative and fungal anti-oxidative mediators that regulate hyphal survival during infection. Further, these findings also indicate that targeting fungal anti-oxidative defenses via PX-12 may represent an efficacious strategy for treating fungal infections.

Authors

Sixto M. Leal Jr., Chairut Vareechon, Susan Cowden, Brian A. Cobb, Jean-Paul Latgé, Michelle Momany, Eric Pearlman

×

Periostin promotes chronic allergic inflammation in response to Th2 cytokines
Miho Masuoka, Hiroshi Shiraishi, Shoichiro Ohta, Shoichi Suzuki, Kazuhiko Arima, Shigehisa Aoki, Shuji Toda, Naoki Inagaki, Yuichi Kurihara, Sayaka Hayashida, Satoshi Takeuchi, Kenta Koike, Junya Ono, Hirokazu Noshiro, Masutaka Furue, Simon J. Conway, Yutaka Narisawa, Kenji Izuhara
Miho Masuoka, Hiroshi Shiraishi, Shoichiro Ohta, Shoichi Suzuki, Kazuhiko Arima, Shigehisa Aoki, Shuji Toda, Naoki Inagaki, Yuichi Kurihara, Sayaka Hayashida, Satoshi Takeuchi, Kenta Koike, Junya Ono, Hirokazu Noshiro, Masutaka Furue, Simon J. Conway, Yutaka Narisawa, Kenji Izuhara
View: Text | PDF

Periostin promotes chronic allergic inflammation in response to Th2 cytokines

  • Text
  • PDF
Abstract

Allergic inflammation triggered by exposure of an allergen frequently leads to the onset of chronic inflammatory diseases such as atopic dermatitis (AD) and bronchial asthma. The mechanisms underlying chronicity in allergic inflammation remain unresolved. Periostin, a recently characterized matricellular protein, interacts with several cell surface integrin molecules, providing signals for tissue development and remodeling. Here we show that periostin is a critical mediator for the amplification and persistence of allergic inflammation using a mouse model of skin inflammation. Th2 cytokines IL-4 and IL-13 stimulated fibroblasts to produce periostin, which interacted with αv integrin, a functional periostin receptor on keratinocytes, inducing production of proinflammatory cytokines, which consequently accelerated Th2-type immune responses. Accordingly, inhibition of periostin or αv integrin prevented the development or progression of allergen-induced skin inflammation. Thus, periostin sets up a vicious circle that links Th2-type immune responses to keratinocyte activation and plays a critical role in the amplification and chronicity of allergic skin inflammation.

Authors

Miho Masuoka, Hiroshi Shiraishi, Shoichiro Ohta, Shoichi Suzuki, Kazuhiko Arima, Shigehisa Aoki, Shuji Toda, Naoki Inagaki, Yuichi Kurihara, Sayaka Hayashida, Satoshi Takeuchi, Kenta Koike, Junya Ono, Hirokazu Noshiro, Masutaka Furue, Simon J. Conway, Yutaka Narisawa, Kenji Izuhara

×

Allograft rejection is restrained by short-lived TIM-3+PD-1+Foxp3+ Tregs
Shipra Gupta, Thomas B. Thornley, Wenda Gao, Rafael Larocca, Laurence A. Turka, Vijay K. Kuchroo, Terry B. Strom
Shipra Gupta, Thomas B. Thornley, Wenda Gao, Rafael Larocca, Laurence A. Turka, Vijay K. Kuchroo, Terry B. Strom
View: Text | PDF

Allograft rejection is restrained by short-lived TIM-3+PD-1+Foxp3+ Tregs

  • Text
  • PDF
Abstract

Tregs play a pivotal role in inducing and maintaining donor-specific transplant tolerance. The T cell immunoglobulin and mucin domain-3 protein (TIM-3) is expressed on many fully activated effector T cells. Along with program death 1 (PD-1), TIM-3 is used as a marker for exhausted effector T cells, and interaction with its ligand, galectin-9, leads to selective death of TIM-3+ cells. We report herein the presence of a galectin-9–sensitive CD4+FoxP3+TIM-3+ population of T cells, which arose from CD4+FoxP3+TIM-3– proliferating T cells in vitro and in vivo and were often PD-1+. These cells became very prominent among graft-infiltrating Tregs during allograft response. The frequency and number of TIM-3+ Tregs peaked at the time of graft rejection and declined thereafter. Moreover, these cells also arise in a tolerance-promoting donor-specific transfusion model, representing a pool of proliferating, donor-specific Tregs. Compared with TIM-3– Tregs, TIM-3+ Tregs, which are often PD-1+ as well, exhibited higher in vitro effector function and more robust expression of CD25, CD39, CD73, CTLA-4, IL-10, and TGF-β but not galectin-9. However, these TIM-3+ Tregs did not flourish when passively transferred to newly transplanted hosts. These data suggest that a heretofore unrecognized graft-infiltrating, short-lived subset of Tregs can restrain rejection.

Authors

Shipra Gupta, Thomas B. Thornley, Wenda Gao, Rafael Larocca, Laurence A. Turka, Vijay K. Kuchroo, Terry B. Strom

×

Thymocyte responsiveness to endogenous glucocorticoids is required for immunological fitness
Paul R. Mittelstadt, João P. Monteiro, Jonathan D. Ashwell
Paul R. Mittelstadt, João P. Monteiro, Jonathan D. Ashwell
View: Text | PDF

Thymocyte responsiveness to endogenous glucocorticoids is required for immunological fitness

  • Text
  • PDF
Abstract

Generation of a self-tolerant but antigen-responsive T cell repertoire occurs in the thymus. Although glucocorticoids are usually considered immunosuppressive, there is also evidence that they play a positive role in thymocyte selection. To address the question of how endogenous glucocorticoids might influence the adaptive immune response, we generated GRlck-Cre mice, in which the glucocorticoid receptor gene (GR) is deleted in thymocytes prior to selection. These mice were immunocompromised, with reduced polyclonal T cell proliferative responses to alloantigen, defined peptide antigens, and viral infection. This was not due to an intrinsic proliferation defect, because GR-deficient T cells responded normally when the TCR was cross-linked with antibodies or when the T cell repertoire was “fixed” with αβ TCR transgenes. Varying the affinity of self ligands in αβ TCR transgenic mice showed that affinities that would normally lead to thymocyte-positive selection caused negative selection, and alterations in the TCR repertoire of polyclonal T cells were confirmed by analysis of TCR Vβ CDR3 regions. Thus, endogenous glucocorticoids are required for a robust adaptive immune response because of their promotion of the selection of T cells that have sufficient affinity for self, and the absence of thymocyte glucocorticoid signaling results in an immunocompromised state.

Authors

Paul R. Mittelstadt, João P. Monteiro, Jonathan D. Ashwell

×

Glucocorticoid receptor dimerization induces MKP1 to protect against TNF-induced inflammation
Sofie Vandevyver, Lien Dejager, Tom Van Bogaert, Anna Kleyman, Yusen Liu, Jan Tuckermann, Claude Libert
Sofie Vandevyver, Lien Dejager, Tom Van Bogaert, Anna Kleyman, Yusen Liu, Jan Tuckermann, Claude Libert
View: Text | PDF | Corrigendum

Glucocorticoid receptor dimerization induces MKP1 to protect against TNF-induced inflammation

  • Text
  • PDF
Abstract

Glucocorticoids acting through the glucocorticoid receptor (GR) inhibit TNF-induced lethal inflammation. Here, we demonstrate that GR dimerization plays a role in reducing TNF sensitivity. In mutant mice unable to dimerize GR, we found that TNF failed to induce MAPK phosphatase 1 (MKP1). We assessed TNF sensitivity in Mkp1–/– mice and found increased inflammatory gene induction in livers, increased circulating cytokines, cell death in intestinal epithelium, severe intestinal inflammation, hypothermia, and death. Mkp1–/– mice had increased levels of phosphorylated JNK, which promotes apoptosis, in liver tissue. We further examined JNK-deficient mice for their response to TNF. Although Jnk1–/– mice showed no change in sensitivity to TNF, Jnk2–/– mice were significantly protected against TNF, identifying JNK2 as an essential player in inflammation induced by TNF. Furthermore, we found that loss of Jnk2 partially rescued the increased sensitivity of Mkp1–/– and mutant GR mice to TNF. Our data show that GR dimerization inhibits JNK2 through MKP1 and protects from TNF-induced apoptosis and lethal inflammation.

Authors

Sofie Vandevyver, Lien Dejager, Tom Van Bogaert, Anna Kleyman, Yusen Liu, Jan Tuckermann, Claude Libert

×

Antigen-presenting cell–derived complement modulates graft-versus-host disease
Wing-Hong Kwan, Daigo Hashimoto, Estela Paz-Artal, Katya Ostrow, Melanie Greter, Hugo Raedler, M. Edward Medof, Miriam Merad, Peter S. Heeger
Wing-Hong Kwan, Daigo Hashimoto, Estela Paz-Artal, Katya Ostrow, Melanie Greter, Hugo Raedler, M. Edward Medof, Miriam Merad, Peter S. Heeger
View: Text | PDF

Antigen-presenting cell–derived complement modulates graft-versus-host disease

  • Text
  • PDF
Abstract

Acute graft-versus-host disease (GvHD) is a serious complication of allogeneic hematopoietic cell transplantation (allo-HCT) that results from donor allogeneic T cell attack on host tissues. Based on previous work implicating immune cell–derived C3a and C5a as regulators of T cell immunity, we examined the effects of locally produced C3a and C5a on murine T cell–mediated GvHD. We found that total body irradiation, a conditioning regimen required to permit engraftment of allo-HCT, caused upregulation and activation of alternative pathway complement components by recipient APCs. Allo-HCT with decay accelerating factor–null (Daf1–/–) host BM and Daf1–/– donor lymphocytes led to exacerbated GvHD outcome and resulted in splenic and organ-infiltrating T cell expansion. T cells deficient in C3a receptor (C3aR) and/or C5a receptor (C5aR) responded weakly in allogeneic hosts and exhibited limited ability to induce GvHD. Using a clinically relevant treatment strategy, we showed that pharmacological C5aR blockade reduced GvHD morbidity. Our data mechanistically link APC-derived complement to T cell–mediated GvHD and support complement inhibition as a therapeutic strategy for GvHD in humans.

Authors

Wing-Hong Kwan, Daigo Hashimoto, Estela Paz-Artal, Katya Ostrow, Melanie Greter, Hugo Raedler, M. Edward Medof, Miriam Merad, Peter S. Heeger

×

MyD88 is critically involved in immune tolerance breakdown at environmental interfaces of Foxp3-deficient mice
Magali Noval Rivas, Yi T. Koh, Andrew Chen, Annie Nguyen, Young Ho Lee, Greg Lawson, Talal A. Chatila
Magali Noval Rivas, Yi T. Koh, Andrew Chen, Annie Nguyen, Young Ho Lee, Greg Lawson, Talal A. Chatila
View: Text | PDF

MyD88 is critically involved in immune tolerance breakdown at environmental interfaces of Foxp3-deficient mice

  • Text
  • PDF
Abstract

Tregs expressing the transcription factor Foxp3 suppress self-reactive T cells, prevent autoimmunity, and help contain immune responses to foreign antigens, thereby limiting the potential for inadvertent tissue damage. Mutations in the FOXP3 gene result in Treg deficiency in mice and humans, which leads to the development of a multisystem autoimmune inflammatory disease. The contribution of dysregulated innate immune responses to the pathogenesis of Foxp3 deficiency disease is unknown. In this study, we examined the role of microbial signals in the pathogenesis of Foxp3 deficiency disease by studying Foxp3 mutant mice that had concurrent deficiencies in TLR signaling pathways. Global deficiency of the common TLR adaptor MyD88 offered partial protection from Foxp3 deficiency disease. Specifically, it protected from disease at the environmental interfaces of the skin, lungs, and gut. In contrast, systemic disease, in the form of unrestrained lymphoproliferation, continued unabated. The effect of MyD88 deficiency at environmental interfaces involved the disruption of chemokine gradients that recruit effector T cells and DCs, resulting in their entrapment in secondary lymphoid tissues. These results suggests that Tregs have a key role in maintaining tolerance at host-microbial interfaces by restraining tonic MyD88-dependent proinflammatory signals. Moreover, microbial factors may play a substantial role in the pathogenesis of human autoimmune disease resulting from Treg deficiency.

Authors

Magali Noval Rivas, Yi T. Koh, Andrew Chen, Annie Nguyen, Young Ho Lee, Greg Lawson, Talal A. Chatila

×

CD14 and NFAT mediate lipopolysaccharide-induced skin edema formation in mice
Ivan Zanoni, Renato Ostuni, Simona Barresi, Marco Di Gioia, Achille Broggi, Barbara Costa, Roberta Marzi, Francesca Granucci
Ivan Zanoni, Renato Ostuni, Simona Barresi, Marco Di Gioia, Achille Broggi, Barbara Costa, Roberta Marzi, Francesca Granucci
View: Text | PDF

CD14 and NFAT mediate lipopolysaccharide-induced skin edema formation in mice

  • Text
  • PDF
Abstract

Inflammation is a multistep process triggered when innate immune cells — for example, DCs — sense a pathogen or injured cell or tissue. Edema formation is one of the first steps in the inflammatory response; it is fundamental for the local accumulation of inflammatory mediators. Injection of LPS into the skin provides a model for studying the mechanisms of inflammation and edema formation. While it is known that innate immune recognition of LPS leads to activation of numerous transcriptional activators, including nuclear factor of activated T cells (NFAT) isoforms, the molecular pathways that lead to edema formation have not been determined. As PGE2 regulates many proinflammatory processes, including swelling and pain, and it is induced by LPS, we hypothesized that PGE2 mediates the local generation of edema following LPS exposure. Here, we show that tissue-resident DCs are the main source of PGE2 and the main controllers of tissue edema formation in a mouse model of LPS-induced inflammation. LPS exposure induced expression of microsomal PGE synthase-1 (mPGES-1), a key enzyme in PGE2 biosynthesis. mPGES-1 activation, PGE2 production, and edema formation required CD14 (a component of the LPS receptor) and NFAT. Therefore, tissue edema formation induced by LPS is DC and CD14/NFAT dependent. Moreover, DCs can regulate free antigen arrival at the draining lymph nodes by controlling edema formation and interstitial fluid pressure in the presence of LPS. We therefore suggest that the CD14/NFAT/mPGES-1 pathway represents a possible target for antiinflammatory therapies.

Authors

Ivan Zanoni, Renato Ostuni, Simona Barresi, Marco Di Gioia, Achille Broggi, Barbara Costa, Roberta Marzi, Francesca Granucci

×
  • ← Previous
  • 1
  • 2
  • …
  • 107
  • 108
  • 109
  • …
  • 145
  • 146
  • Next →
Exosome delivery promotes allograft rejection
Quan Lui and colleagues reveal that delivery of donor MHC-containing exosomes from donor DCs to recipient DCs drive allograft-targeting immune responses…
Published June 27, 2016
Scientific Show StopperImmunology

Helminth co-infection exacerbates tuberculosis
Leticia Monin and colleagues provide insight how helminth co-infection drives increased susceptibility to severe tuberculosis...
Published November 16, 2015
Scientific Show StopperImmunology

Directing T cell traffic
Yanping Huang and colleagues demonstrate that CRK and CRKL regulate T cell trafficking and T cells lacking these adapter proteins do not home to sites of inflammation….
Published January 26, 2015
Scientific Show StopperImmunology
Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts