Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Allograft rejection is restrained by short-lived TIM-3+PD-1+Foxp3+ Tregs
Shipra Gupta, Thomas B. Thornley, Wenda Gao, Rafael Larocca, Laurence A. Turka, Vijay K. Kuchroo, Terry B. Strom
Shipra Gupta, Thomas B. Thornley, Wenda Gao, Rafael Larocca, Laurence A. Turka, Vijay K. Kuchroo, Terry B. Strom
View: Text | PDF
Research Article Immunology

Allograft rejection is restrained by short-lived TIM-3+PD-1+Foxp3+ Tregs

  • Text
  • PDF
Abstract

Tregs play a pivotal role in inducing and maintaining donor-specific transplant tolerance. The T cell immunoglobulin and mucin domain-3 protein (TIM-3) is expressed on many fully activated effector T cells. Along with program death 1 (PD-1), TIM-3 is used as a marker for exhausted effector T cells, and interaction with its ligand, galectin-9, leads to selective death of TIM-3+ cells. We report herein the presence of a galectin-9–sensitive CD4+FoxP3+TIM-3+ population of T cells, which arose from CD4+FoxP3+TIM-3– proliferating T cells in vitro and in vivo and were often PD-1+. These cells became very prominent among graft-infiltrating Tregs during allograft response. The frequency and number of TIM-3+ Tregs peaked at the time of graft rejection and declined thereafter. Moreover, these cells also arise in a tolerance-promoting donor-specific transfusion model, representing a pool of proliferating, donor-specific Tregs. Compared with TIM-3– Tregs, TIM-3+ Tregs, which are often PD-1+ as well, exhibited higher in vitro effector function and more robust expression of CD25, CD39, CD73, CTLA-4, IL-10, and TGF-β but not galectin-9. However, these TIM-3+ Tregs did not flourish when passively transferred to newly transplanted hosts. These data suggest that a heretofore unrecognized graft-infiltrating, short-lived subset of Tregs can restrain rejection.

Authors

Shipra Gupta, Thomas B. Thornley, Wenda Gao, Rafael Larocca, Laurence A. Turka, Vijay K. Kuchroo, Terry B. Strom

×

Figure 1

The number of CD4+FoxP3+TIM-3+ T cells within dLNs and spleens arising during the allograft response peak at graft rejection.

Options: View larger image (or click on image) Download as PowerPoint
The number of CD4+FoxP3+TIM-3+ T cells within dLNs and spleens arising d...
Fully allogeneic BALB/c (H-2d) or syngeneic C57BL/6 (H-2b) full-thickness body skin was grafted on the lateral thorax of FoxP3 GFP-KI reporter C57BL/6 (H-2b) mice. C57BL/6-KI mice reject the BALB/c skin graft on day 7. The number of FoxP3-GFP+TIM-3+ cells in (A) dLNs and (B) spleens from skin transplant recipients was determined by flow cytometry (n ≥ 8 mice). (A and B) The TIM-3+FoxP3+ T cells within dLNs and spleens peaked at the time of rejection and were more numerous in allogeneic as compared with syngeneic grafted hosts. Data are presented as mean ± SEM; *P < 0.05; **P < 0.01. (C) Gated CD4+GFP+FoxP3+ cells harvested from collagenase digested allogeneic skin transplants were analyzed for TIM-3 expression by flow cytometry. CD4+GFP+FoxP3+TIM-3+ Tregs comprised 40% of the graft-infiltrating Tregs on day 5 after transplantation. (D) The magnitude of TIM-3 expression on the TIM-3+ Tregs is depicted in comparison to the staining control. Gray shading represents fluorescence minus 1 for TIM-3 staining, and the black line represents TIM-3 expression on CD4+GFP+FoxP3+ cells in the graft (n = 4).

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts