Mutations within the gene encoding the DNA helicase RECQL4 underlie the autosomal recessive cancer-predisposition disorder Rothmund-Thomson syndrome, though it is unclear how these mutations lead to disease. Here, we demonstrated that somatic deletion of
Monique F. Smeets, Elisabetta DeLuca, Meaghan Wall, Julie M. Quach, Alistair M. Chalk, Andrew J. Deans, Jörg Heierhorst, Louise E. Purton, David J. Izon, Carl R. Walkley
Sphingosine-1-phosphate (S1P) is a bioactive lipid that regulates multicellular functions through interactions with its receptors on cell surfaces. S1P is enriched and stored in erythrocytes; however, it is not clear whether alterations in S1P are involved in the prevalent and debilitating hemolytic disorder sickle cell disease (SCD). Here, using metabolomic screening, we found that S1P is highly elevated in the blood of mice and humans with SCD. In murine models of SCD, we demonstrated that elevated erythrocyte sphingosine kinase 1 (SPHK1) underlies sickling and disease progression by increasing S1P levels in the blood. Additionally, we observed elevated SPHK1 activity in erythrocytes and increased S1P in blood collected from patients with SCD and demonstrated a direct impact of elevated SPHK1-mediated production of S1P on sickling that was independent of S1P receptor activation in isolated erythrocytes. Together, our findings provide insights into erythrocyte pathophysiology, revealing that a SPHK1-mediated elevation of S1P contributes to sickling and promotes disease progression, and highlight potential therapeutic opportunities for SCD.
Yujin Zhang, Vladimir Berka, Anren Song, Kaiqi Sun, Wei Wang, Weiru Zhang, Chen Ning, Chonghua Li, Qibo Zhang, Mikhail Bogdanov, Danny C. Alexander, Michael V. Milburn, Mostafa H. Ahmed, Han Lin, Modupe Idowu, Jun Zhang, Gregory J. Kato, Osheiza Y. Abdulmalik, Wenzheng Zhang, William Dowhan, Rodney E. Kellems, Pumin Zhang, Jianping Jin, Martin Safo, Ah-Lim Tsai, Harinder S. Juneja, Yang Xia
Overactive RAS signaling is prevalent in juvenile myelomonocytic leukemia (JMML) and the myeloproliferative variant of chronic myelomonocytic leukemia (MP-CMML) in humans, and both are refractory to conventional chemotherapy. Conditional activation of a constitutively active oncogenic
Guangyao Kong, Mark Wunderlich, David Yang, Erik A. Ranheim, Ken H. Young, Jinyong Wang, Yuan-I Chang, Juan Du, Yangang Liu, Sin Ruow Tey, Xinmin Zhang, Mark Juckett, Ryan Mattison, Alisa Damnernsawad, Jingfang Zhang, James C. Mulloy, Jing Zhang
Expression of the gene encoding the S100 calcium–modulated protein family member MRP-14 (also known as S100A9) is elevated in platelets from patients presenting with acute myocardial infarction (MI) compared with those from patients with stable coronary artery disease; however, a causal role for MRP-14 in acute coronary syndromes has not been established. Here, using multiple models of vascular injury, we found that time to arterial thrombotic occlusion was markedly prolonged in
Yunmei Wang, Chao Fang, Huiyun Gao, Matthew L. Bilodeau, Zijie Zhang, Kevin Croce, Shijian Liu, Toshifumi Morooka, Masashi Sakuma, Kohsuke Nakajima, Shuichi Yoneda, Can Shi, David Zidar, Patrick Andre, Gillian Stephens, Roy L. Silverstein, Nancy Hogg, Alvin H. Schmaier, Daniel I. Simon
Genetic studies have identified common variants within the intergenic region (
Ralph Stadhouders, Suleyman Aktuna, Supat Thongjuea, Ali Aghajanirefah, Farzin Pourfarzad, Wilfred van IJcken, Boris Lenhard, Helen Rooks, Steve Best, Stephan Menzel, Frank Grosveld, Swee Lay Thein, Eric Soler
Point mutations in the 5′ UTR of ankyrin repeat domain 26 (
Dominique Bluteau, Alessandra Balduini, Nathalie Balayn, Manuela Currao, Paquita Nurden, Caroline Deswarte, Guy Leverger, Patrizia Noris, Silverio Perrotta, Eric Solary, William Vainchenker, Najet Debili, Remi Favier, Hana Raslova
The shelterin complex plays dual functions in telomere homeostasis by recruiting telomerase and preventing the activation of a DNA damage response at telomeric ends. Somatic stem cells require telomerase activity, as evidenced by progressive stem cell loss leading to bone marrow failure in hereditary dyskeratosis congenita. Recent work demonstrates that dyskeratosis congenita can also arise from mutations in specific shelterin genes, although little is known about shelterin functions in somatic stem cells. We found that mouse hematopoietic stem cells (HSCs) are acutely sensitive to inactivation of the shelterin gene
Morgan Jones, Gail Osawa, Joshua A. Regal, Daniel N. Weinberg, James Taggart, Hande Kocak, Ann Friedman, David O. Ferguson, Catherine E. Keegan, Ivan Maillard
Mammals transport blood through a high-pressure, closed vascular network and lymph through a low-pressure, open vascular network. These vascular networks connect at the lymphovenous (LV) junction, where lymph drains into blood and an LV valve (LVV) prevents backflow of blood into lymphatic vessels. Here we describe an essential role for platelets in preventing blood from entering the lymphatic system at the LV junction. Loss of CLEC2, a receptor that activates platelets in response to lymphatic endothelial cells, resulted in backfilling of the lymphatic network with blood from the thoracic duct (TD) in both neonatal and mature mice. Fibrin-containing platelet thrombi were observed at the LVV and in the terminal TD in wild-type mice, but not
Paul R. Hess, David R. Rawnsley, Zoltán Jakus, Yiqing Yang, Daniel T. Sweet, Jianxin Fu, Brett Herzog, MinMin Lu, Bernhard Nieswandt, Guillermo Oliver, Taija Makinen, Lijun Xia, Mark L. Kahn
Myelodysplastic syndromes (MDS) are age-dependent stem cell malignancies that share biological features of activated adaptive immune response and ineffective hematopoiesis. Here we report that myeloid-derived suppressor cells (MDSC), which are classically linked to immunosuppression, inflammation, and cancer, were markedly expanded in the bone marrow of MDS patients and played a pathogenetic role in the development of ineffective hematopoiesis. These clonally distinct MDSC overproduce hematopoietic suppressive cytokines and function as potent apoptotic effectors targeting autologous hematopoietic progenitors. Using multiple transfected cell models, we found that MDSC expansion is driven by the interaction of the proinflammatory molecule S100A9 with CD33. These 2 proteins formed a functional ligand/receptor pair that recruited components to CD33’s immunoreceptor tyrosine-based inhibition motif (ITIM), inducing secretion of the suppressive cytokines IL-10 and TGF-β by immature myeloid cells.
Xianghong Chen, Erika A. Eksioglu, Junmin Zhou, Ling Zhang, Julie Djeu, Nicole Fortenbery, Pearlie Epling-Burnette, Sandra Van Bijnen, Harry Dolstra, John Cannon, Je-in Youn, Sarah S. Donatelli, Dahui Qin, Theo De Witte, Jianguo Tao, Huaquan Wang, Pingyan Cheng, Dmitry I. Gabrilovich, Alan List, Sheng Wei
Recurrent mutations in the gene encoding additional sex combs-like 1 (
Daichi Inoue, Jiro Kitaura, Katsuhiro Togami, Koutarou Nishimura, Yutaka Enomoto, Tomoyuki Uchida, Yuki Kagiyama, Kimihito Cojin Kawabata, Fumio Nakahara, Kumi Izawa, Toshihiko Oki, Akie Maehara, Masamichi Isobe, Akiho Tsuchiya, Yuka Harada, Hironori Harada, Takahiro Ochiya, Hiroyuki Aburatani, Hiroshi Kimura, Felicitas Thol, Michael Heuser, Ross L. Levine, Omar Abdel-Wahab, Toshio Kitamura