Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Hematology

  • 377 Articles
  • 4 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 23
  • 24
  • 25
  • …
  • 37
  • 38
  • Next →
The Rothmund-Thomson syndrome helicase RECQL4 is essential for hematopoiesis
Monique F. Smeets, … , David J. Izon, Carl R. Walkley
Monique F. Smeets, … , David J. Izon, Carl R. Walkley
Published June 24, 2014
Citation Information: J Clin Invest. 2014. https://doi.org/10.1172/JCI75334.
View: Text | PDF

The Rothmund-Thomson syndrome helicase RECQL4 is essential for hematopoiesis

  • Text
  • PDF
Abstract

Mutations within the gene encoding the DNA helicase RECQL4 underlie the autosomal recessive cancer-predisposition disorder Rothmund-Thomson syndrome, though it is unclear how these mutations lead to disease. Here, we demonstrated that somatic deletion of Recql4 causes a rapid bone marrow failure in mice that involves cells from across the myeloid, lymphoid, and, most profoundly, erythroid lineages. Apoptosis was markedly elevated in multipotent progenitors lacking RECQL4 compared with WT cells. While the stem cell compartment was relatively spared in RECQL4-deficent mice, HSCs from these animals were not transplantable and even selected against. The requirement for RECQL4 was intrinsic in hematopoietic cells, and loss of RECQL4 in these cells was associated with increased replicative DNA damage and failed cell-cycle progression. Concurrent deletion of p53, which rescues loss of function in animals lacking the related helicase BLM, did not rescue BM phenotypes in RECQL4-deficient animals. In contrast, hematopoietic defects in cells from Recql4Δ/Δ mice were fully rescued by a RECQL4 variant without RecQ helicase activity, demonstrating that RECQL4 maintains hematopoiesis independently of helicase activity. Together, our data indicate that RECQL4 participates in DNA replication rather than genome stability and identify RECQL4 as a regulator of hematopoiesis with a nonredundant role compared with other RecQ helicases.

Authors

Monique F. Smeets, Elisabetta DeLuca, Meaghan Wall, Julie M. Quach, Alistair M. Chalk, Andrew J. Deans, Jörg Heierhorst, Louise E. Purton, David J. Izon, Carl R. Walkley

×

Elevated sphingosine-1-phosphate promotes sickling and sickle cell disease progression
Yujin Zhang, … , Harinder S. Juneja, Yang Xia
Yujin Zhang, … , Harinder S. Juneja, Yang Xia
Published May 16, 2014
Citation Information: J Clin Invest. 2014. https://doi.org/10.1172/JCI74604.
View: Text | PDF | Corrigendum

Elevated sphingosine-1-phosphate promotes sickling and sickle cell disease progression

  • Text
  • PDF
Abstract

Sphingosine-1-phosphate (S1P) is a bioactive lipid that regulates multicellular functions through interactions with its receptors on cell surfaces. S1P is enriched and stored in erythrocytes; however, it is not clear whether alterations in S1P are involved in the prevalent and debilitating hemolytic disorder sickle cell disease (SCD). Here, using metabolomic screening, we found that S1P is highly elevated in the blood of mice and humans with SCD. In murine models of SCD, we demonstrated that elevated erythrocyte sphingosine kinase 1 (SPHK1) underlies sickling and disease progression by increasing S1P levels in the blood. Additionally, we observed elevated SPHK1 activity in erythrocytes and increased S1P in blood collected from patients with SCD and demonstrated a direct impact of elevated SPHK1-mediated production of S1P on sickling that was independent of S1P receptor activation in isolated erythrocytes. Together, our findings provide insights into erythrocyte pathophysiology, revealing that a SPHK1-mediated elevation of S1P contributes to sickling and promotes disease progression, and highlight potential therapeutic opportunities for SCD.

Authors

Yujin Zhang, Vladimir Berka, Anren Song, Kaiqi Sun, Wei Wang, Weiru Zhang, Chen Ning, Chonghua Li, Qibo Zhang, Mikhail Bogdanov, Danny C. Alexander, Michael V. Milburn, Mostafa H. Ahmed, Han Lin, Modupe Idowu, Jun Zhang, Gregory J. Kato, Osheiza Y. Abdulmalik, Wenzheng Zhang, William Dowhan, Rodney E. Kellems, Pumin Zhang, Jianping Jin, Martin Safo, Ah-Lim Tsai, Harinder S. Juneja, Yang Xia

×

Combined MEK and JAK inhibition abrogates murine myeloproliferative neoplasm
Guangyao Kong, … , James C. Mulloy, Jing Zhang
Guangyao Kong, … , James C. Mulloy, Jing Zhang
Published May 8, 2014
Citation Information: J Clin Invest. 2014. https://doi.org/10.1172/JCI74182.
View: Text | PDF

Combined MEK and JAK inhibition abrogates murine myeloproliferative neoplasm

  • Text
  • PDF
Abstract

Overactive RAS signaling is prevalent in juvenile myelomonocytic leukemia (JMML) and the myeloproliferative variant of chronic myelomonocytic leukemia (MP-CMML) in humans, and both are refractory to conventional chemotherapy. Conditional activation of a constitutively active oncogenic Nras (NrasG12D/G12D) in murine hematopoietic cells promotes an acute myeloproliferative neoplasm (MPN) that recapitulates many features of JMML and MP-CMML. We found that NrasG12D/G12D-expressing HSCs, which serve as JMML/MP-CMML–initiating cells, show strong hyperactivation of ERK1/2, promoting hyperproliferation and depletion of HSCs and expansion of downstream progenitors. Inhibition of the MEK pathway alone prolonged the presence of NrasG12D/G12D-expressing HSCs but failed to restore their proper function. Consequently, approximately 60% of NrasG12D/G12D mice treated with MEK inhibitor alone died within 20 weeks, and the remaining animals continued to display JMML/MP-CMML–like phenotypes. In contrast, combined inhibition of MEK and JAK/STAT signaling, which is commonly hyperactivated in human and mouse CMML, potently inhibited human and mouse CMML cell growth in vitro, rescued mutant NrasG12D/G12D-expressing HSC function in vivo, and promoted long-term survival without evident disease manifestation in NrasG12D/G12D animals. These results provide a strong rationale for further exploration of combined targeting of MEK/ERK and JAK/STAT in treating patients with JMML and MP-CMML.

Authors

Guangyao Kong, Mark Wunderlich, David Yang, Erik A. Ranheim, Ken H. Young, Jinyong Wang, Yuan-I Chang, Juan Du, Yangang Liu, Sin Ruow Tey, Xinmin Zhang, Mark Juckett, Ryan Mattison, Alisa Damnernsawad, Jingfang Zhang, James C. Mulloy, Jing Zhang

×

Platelet-derived S100 family member myeloid-related protein-14 regulates thrombosis
Yunmei Wang, … , Alvin H. Schmaier, Daniel I. Simon
Yunmei Wang, … , Alvin H. Schmaier, Daniel I. Simon
Published April 1, 2014
Citation Information: J Clin Invest. 2014. https://doi.org/10.1172/JCI70966.
View: Text | PDF

Platelet-derived S100 family member myeloid-related protein-14 regulates thrombosis

  • Text
  • PDF
Abstract

Expression of the gene encoding the S100 calcium–modulated protein family member MRP-14 (also known as S100A9) is elevated in platelets from patients presenting with acute myocardial infarction (MI) compared with those from patients with stable coronary artery disease; however, a causal role for MRP-14 in acute coronary syndromes has not been established. Here, using multiple models of vascular injury, we found that time to arterial thrombotic occlusion was markedly prolonged in Mrp14–/– mice. We observed that MRP-14 and MRP-8/MRP-14 heterodimers (S100A8/A9) are expressed in and secreted by platelets from WT mice and that thrombus formation was reduced in whole blood from Mrp14–/– mice. Infusion of WT platelets, purified MRP-14, or purified MRP-8/MRP-14 heterodimers into Mrp14–/– mice decreased the time to carotid artery occlusion after injury, indicating that platelet-derived MRP-14 directly regulates thrombosis. In contrast, infusion of purified MRP-14 into mice deficient for both MRP-14 and CD36 failed to reduce carotid occlusion times, indicating that CD36 is required for MRP-14–dependent thrombosis. Our data identify a molecular pathway of thrombosis that involves platelet MRP-14 and CD36 and suggest that targeting MRP-14 has potential for treating atherothrombotic disorders, including MI and stroke.

Authors

Yunmei Wang, Chao Fang, Huiyun Gao, Matthew L. Bilodeau, Zijie Zhang, Kevin Croce, Shijian Liu, Toshifumi Morooka, Masashi Sakuma, Kohsuke Nakajima, Shuichi Yoneda, Can Shi, David Zidar, Patrick Andre, Gillian Stephens, Roy L. Silverstein, Nancy Hogg, Alvin H. Schmaier, Daniel I. Simon

×

HBS1L-MYB intergenic variants modulate fetal hemoglobin via long-range MYB enhancers
Ralph Stadhouders, … , Swee Lay Thein, Eric Soler
Ralph Stadhouders, … , Swee Lay Thein, Eric Soler
Published March 10, 2014
Citation Information: J Clin Invest. 2014. https://doi.org/10.1172/JCI71520.
View: Text | PDF

HBS1L-MYB intergenic variants modulate fetal hemoglobin via long-range MYB enhancers

  • Text
  • PDF
Abstract

Genetic studies have identified common variants within the intergenic region (HBS1L-MYB) between GTP-binding elongation factor HBS1L and myeloblastosis oncogene MYB on chromosome 6q that are associated with elevated fetal hemoglobin (HbF) levels and alterations of other clinically important human erythroid traits. It is unclear how these noncoding sequence variants affect multiple erythrocyte characteristics. Here, we determined that several HBS1L-MYB intergenic variants affect regulatory elements that are occupied by key erythroid transcription factors within this region. These elements interact with MYB, a critical regulator of erythroid development and HbF levels. We found that several HBS1L-MYB intergenic variants reduce transcription factor binding, affecting long-range interactions with MYB and MYB expression levels. These data provide a functional explanation for the genetic association of HBS1L-MYB intergenic polymorphisms with human erythroid traits and HbF levels. Our results further designate MYB as a target for therapeutic induction of HbF to ameliorate sickle cell and β-thalassemia disease severity.

Authors

Ralph Stadhouders, Suleyman Aktuna, Supat Thongjuea, Ali Aghajanirefah, Farzin Pourfarzad, Wilfred van IJcken, Boris Lenhard, Helen Rooks, Steve Best, Stephan Menzel, Frank Grosveld, Swee Lay Thein, Eric Soler

×

Thrombocytopenia-associated mutations in the ANKRD26 regulatory region induce MAPK hyperactivation
Dominique Bluteau, … , Remi Favier, Hana Raslova
Dominique Bluteau, … , Remi Favier, Hana Raslova
Published January 16, 2014
Citation Information: J Clin Invest. 2014. https://doi.org/10.1172/JCI71861.
View: Text | PDF

Thrombocytopenia-associated mutations in the ANKRD26 regulatory region induce MAPK hyperactivation

  • Text
  • PDF
Abstract

Point mutations in the 5′ UTR of ankyrin repeat domain 26 (ANKRD26) are associated with familial thrombocytopenia 2 (THC2) and a predisposition to leukemia. Here, we identified underlying mechanisms of ANKRD26-associated thrombocytopenia. Using megakaryocytes (MK) isolated from THC2 patients and healthy subjects, we demonstrated that THC2-associated mutations in the 5′ UTR of ANKRD26 resulted in loss of runt-related transcription factor 1 (RUNX1) and friend leukemia integration 1 transcription factor (FLI1) binding. RUNX1 and FLI1 binding at the 5′ UTR from healthy subjects led to ANKRD26 silencing during the late stages of megakaryopoiesis and blood platelet development. We showed that persistent ANKRD26 expression in isolated MKs increased signaling via the thrombopoietin/myeloproliferative leukemia virus oncogene (MPL) pathway and impaired proplatelet formation by MKs. Importantly, we demonstrated that ERK inhibition completely rescued the in vitro proplatelet formation defect. Our data identify a mechanism for development of the familial thrombocytopenia THC2 that is related to abnormal MAPK signaling.

Authors

Dominique Bluteau, Alessandra Balduini, Nathalie Balayn, Manuela Currao, Paquita Nurden, Caroline Deswarte, Guy Leverger, Patrizia Noris, Silverio Perrotta, Eric Solary, William Vainchenker, Najet Debili, Remi Favier, Hana Raslova

×

Hematopoietic stem cells are acutely sensitive to Acd shelterin gene inactivation
Morgan Jones, … , Catherine E. Keegan, Ivan Maillard
Morgan Jones, … , Catherine E. Keegan, Ivan Maillard
Published December 9, 2013
Citation Information: J Clin Invest. 2013. https://doi.org/10.1172/JCI67871.
View: Text | PDF

Hematopoietic stem cells are acutely sensitive to Acd shelterin gene inactivation

  • Text
  • PDF
Abstract

The shelterin complex plays dual functions in telomere homeostasis by recruiting telomerase and preventing the activation of a DNA damage response at telomeric ends. Somatic stem cells require telomerase activity, as evidenced by progressive stem cell loss leading to bone marrow failure in hereditary dyskeratosis congenita. Recent work demonstrates that dyskeratosis congenita can also arise from mutations in specific shelterin genes, although little is known about shelterin functions in somatic stem cells. We found that mouse hematopoietic stem cells (HSCs) are acutely sensitive to inactivation of the shelterin gene Acd, encoding TPP1. Homozygosity for a hypomorphic acd allele preserved the emergence and expansion of fetal HSCs but led to profoundly defective function in transplantation assays. Upon complete Acd inactivation, HSCs expressed p53 target genes, underwent cell cycle arrest, and were severely depleted within days, leading to hematopoietic failure. TPP1 loss induced increased telomeric fusion events in bone marrow progenitors. However, unlike in epidermal stem cells, p53 deficiency did not rescue TPP1-deficient HSCs, indicating that shelterin dysfunction has unique effects in different stem cell populations. Because the consequences of telomere shortening are progressive and unsynchronized, acute loss of shelterin function represents an attractive alternative for studying telomere crisis in hematopoietic progenitors.

Authors

Morgan Jones, Gail Osawa, Joshua A. Regal, Daniel N. Weinberg, James Taggart, Hande Kocak, Ann Friedman, David O. Ferguson, Catherine E. Keegan, Ivan Maillard

×

Platelets mediate lymphovenous hemostasis to maintain blood-lymphatic separation throughout life
Paul R. Hess, … , Lijun Xia, Mark L. Kahn
Paul R. Hess, … , Lijun Xia, Mark L. Kahn
Published December 2, 2013
Citation Information: J Clin Invest. 2013. https://doi.org/10.1172/JCI70422.
View: Text | PDF

Platelets mediate lymphovenous hemostasis to maintain blood-lymphatic separation throughout life

  • Text
  • PDF
Abstract

Mammals transport blood through a high-pressure, closed vascular network and lymph through a low-pressure, open vascular network. These vascular networks connect at the lymphovenous (LV) junction, where lymph drains into blood and an LV valve (LVV) prevents backflow of blood into lymphatic vessels. Here we describe an essential role for platelets in preventing blood from entering the lymphatic system at the LV junction. Loss of CLEC2, a receptor that activates platelets in response to lymphatic endothelial cells, resulted in backfilling of the lymphatic network with blood from the thoracic duct (TD) in both neonatal and mature mice. Fibrin-containing platelet thrombi were observed at the LVV and in the terminal TD in wild-type mice, but not Clec2-deficient mice. Analysis of mice lacking LVVs or lymphatic valves revealed that platelet-mediated thrombus formation limits LV backflow under conditions of impaired valve function. Examination of mice lacking integrin-mediated platelet aggregation indicated that platelet aggregation stabilizes thrombi that form in the lymphatic vascular environment to prevent retrograde blood flow. Collectively, these studies unveil a newly recognized form of hemostasis that functions with the LVV to safeguard the lymphatic vascular network throughout life.

Authors

Paul R. Hess, David R. Rawnsley, Zoltán Jakus, Yiqing Yang, Daniel T. Sweet, Jianxin Fu, Brett Herzog, MinMin Lu, Bernhard Nieswandt, Guillermo Oliver, Taija Makinen, Lijun Xia, Mark L. Kahn

×

Induction of myelodysplasia by myeloid-derived suppressor cells
Xianghong Chen, … , Alan List, Sheng Wei
Xianghong Chen, … , Alan List, Sheng Wei
Published October 15, 2013
Citation Information: J Clin Invest. 2013. https://doi.org/10.1172/JCI67580.
View: Text | PDF

Induction of myelodysplasia by myeloid-derived suppressor cells

  • Text
  • PDF
Abstract

Myelodysplastic syndromes (MDS) are age-dependent stem cell malignancies that share biological features of activated adaptive immune response and ineffective hematopoiesis. Here we report that myeloid-derived suppressor cells (MDSC), which are classically linked to immunosuppression, inflammation, and cancer, were markedly expanded in the bone marrow of MDS patients and played a pathogenetic role in the development of ineffective hematopoiesis. These clonally distinct MDSC overproduce hematopoietic suppressive cytokines and function as potent apoptotic effectors targeting autologous hematopoietic progenitors. Using multiple transfected cell models, we found that MDSC expansion is driven by the interaction of the proinflammatory molecule S100A9 with CD33. These 2 proteins formed a functional ligand/receptor pair that recruited components to CD33’s immunoreceptor tyrosine-based inhibition motif (ITIM), inducing secretion of the suppressive cytokines IL-10 and TGF-β by immature myeloid cells. S100A9 transgenic mice displayed bone marrow accumulation of MDSC accompanied by development of progressive multilineage cytopenias and cytological dysplasia. Importantly, early forced maturation of MDSC by either all-trans-retinoic acid treatment or active immunoreceptor tyrosine-based activation motif–bearing (ITAM-bearing) adapter protein (DAP12) interruption of CD33 signaling rescued the hematologic phenotype. These findings indicate that primary bone marrow expansion of MDSC driven by the S100A9/CD33 pathway perturbs hematopoiesis and contributes to the development of MDS.

Authors

Xianghong Chen, Erika A. Eksioglu, Junmin Zhou, Ling Zhang, Julie Djeu, Nicole Fortenbery, Pearlie Epling-Burnette, Sandra Van Bijnen, Harry Dolstra, John Cannon, Je-in Youn, Sarah S. Donatelli, Dahui Qin, Theo De Witte, Jianguo Tao, Huaquan Wang, Pingyan Cheng, Dmitry I. Gabrilovich, Alan List, Sheng Wei

×

Myelodysplastic syndromes are induced by histone methylation–altering ASXL1 mutations
Daichi Inoue, … , Omar Abdel-Wahab, Toshio Kitamura
Daichi Inoue, … , Omar Abdel-Wahab, Toshio Kitamura
Published October 8, 2013
Citation Information: J Clin Invest. 2013. https://doi.org/10.1172/JCI70739.
View: Text | PDF

Myelodysplastic syndromes are induced by histone methylation–altering ASXL1 mutations

  • Text
  • PDF
Abstract

Recurrent mutations in the gene encoding additional sex combs-like 1 (ASXL1) are found in various hematologic malignancies and associated with poor prognosis. In particular, ASXL1 mutations are common in patients with hematologic malignancies associated with myelodysplasia, including myelodysplastic syndromes (MDSs), and chronic myelomonocytic leukemia. Although loss-of-function ASXL1 mutations promote myeloid transformation, a large subset of ASXL1 mutations is thought to result in stable truncation of ASXL1. Here we demonstrate that C-terminal–truncating Asxl1 mutations (ASXL1-MTs) inhibited myeloid differentiation and induced MDS-like disease in mice. ASXL1-MT mice displayed features of human-associated MDS, including multi-lineage myelodysplasia, pancytopenia, and occasional progression to overt leukemia. ASXL1-MT resulted in derepression of homeobox A9 (Hoxa9) and microRNA-125a (miR-125a) expression through inhibition of polycomb repressive complex 2–mediated (PRC2-mediated) methylation of histone H3K27. miR-125a reduced expression of C-type lectin domain family 5, member a (Clec5a), which is involved in myeloid differentiation. In addition, HOXA9 expression was high in MDS patients with ASXL1-MT, while CLEC5A expression was generally low. Thus, ASXL1-MT–induced MDS-like disease in mice is associated with derepression of Hoxa9 and miR-125a and with Clec5a dysregulation. Our data provide evidence for an axis of MDS pathogenesis that implicates both ASXL1 mutations and miR-125a as therapeutic targets in MDS.

Authors

Daichi Inoue, Jiro Kitaura, Katsuhiro Togami, Koutarou Nishimura, Yutaka Enomoto, Tomoyuki Uchida, Yuki Kagiyama, Kimihito Cojin Kawabata, Fumio Nakahara, Kumi Izawa, Toshihiko Oki, Akie Maehara, Masamichi Isobe, Akiho Tsuchiya, Yuka Harada, Hironori Harada, Takahiro Ochiya, Hiroyuki Aburatani, Hiroshi Kimura, Felicitas Thol, Michael Heuser, Ross L. Levine, Omar Abdel-Wahab, Toshio Kitamura

×
  • ← Previous
  • 1
  • 2
  • …
  • 23
  • 24
  • 25
  • …
  • 37
  • 38
  • Next →
Teasing apart active site contributions
Junsong Zhou, Yi Wu, and colleagues reveal that the C-terminal redox-active site of protein disulfide isomerase is essential for coagulation…
Published November 3, 2015
Scientific Show StopperHematology

PRMT5 keeps hematopoietic cells renewing
Fan Liu and colleagues demonstrate that the type II arginine methyltransferase PRMT5 is an important regulator of hematopoietic cell maintenance…
Published August 10, 2015
Scientific Show StopperHematology

Moving toward donor-independent platelets
Ji-Yoon Noh and colleagues use a fine-tuned approach to generate platelet-producing megakaryocyte-erythroid progenitors from murine embryonic stem cells…
Published May 11, 2015
Scientific Show StopperHematology

A family affair
Vijay Sankaran and colleagues demonstrate that a mutation in the X-chromosomal gene encoding aminolevulinic acid synthase underlies disease in a family with macrocytic anemia…
Published February 23, 2015
Scientific Show StopperHematology
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts