Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Hematology

  • 384 Articles
  • 4 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 22
  • 23
  • 24
  • …
  • 38
  • 39
  • Next →
Pathogenesis of ELANE-mutant severe neutropenia revealed by induced pluripotent stem cells
Ramesh C. Nayak, … , Carolyn Lutzko, Jose A. Cancelas
Ramesh C. Nayak, … , Carolyn Lutzko, Jose A. Cancelas
Published July 20, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI80924.
View: Text | PDF

Pathogenesis of ELANE-mutant severe neutropenia revealed by induced pluripotent stem cells

  • Text
  • PDF
Abstract

Severe congenital neutropenia (SCN) is often associated with inherited heterozygous point mutations in ELANE, which encodes neutrophil elastase (NE). However, a lack of appropriate models to recapitulate SCN has substantially hampered the understanding of the genetic etiology and pathobiology of this disease. To this end, we generated both normal and SCN patient–derived induced pluripotent stem cells (iPSCs), and performed genome editing and differentiation protocols that recapitulate the major features of granulopoiesis. Pathogenesis of ELANE point mutations was the result of promyelocyte death and differentiation arrest, and was associated with NE mislocalization and activation of the unfolded protein response/ER stress (UPR/ER stress). Similarly, high-dose G-CSF (or downstream signaling through AKT/BCL2) rescues the dysgranulopoietic defect in SCN patient–derived iPSCs through C/EBPβ-dependent emergency granulopoiesis. In contrast, sivelestat, an NE-specific small-molecule inhibitor, corrected dysgranulopoiesis by restoring normal intracellular NE localization in primary granules; ameliorating UPR/ER stress; increasing expression of CEBPA, but not CEBPB; and promoting promyelocyte survival and differentiation. Together, these data suggest that SCN disease pathogenesis includes NE mislocalization, which in turn triggers dysfunctional survival signaling and UPR/ER stress. This paradigm has the potential to be clinically exploited to achieve therapeutic responses using lower doses of G-CSF combined with targeting to correct NE mislocalization.

Authors

Ramesh C. Nayak, Lisa R. Trump, Bruce J. Aronow, Kasiani Myers, Parinda Mehta, Theodosia Kalfa, Ashley M. Wellendorf, C. Alexander Valencia, Patrick J. Paddison, Marshall S. Horwitz, H. Leighton Grimes, Carolyn Lutzko, Jose A. Cancelas

×

IL-33 signaling contributes to the pathogenesis of myeloproliferative neoplasms
Lukas F. Mager, … , Bruce Beutler, Philippe Krebs
Lukas F. Mager, … , Bruce Beutler, Philippe Krebs
Published May 26, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI77347.
View: Text | PDF

IL-33 signaling contributes to the pathogenesis of myeloproliferative neoplasms

  • Text
  • PDF
Abstract

Myeloproliferative neoplasms (MPNs) are characterized by the clonal expansion of one or more myeloid cell lineage. In most cases, proliferation of the malignant clone is ascribed to defined genetic alterations. MPNs are also associated with aberrant expression and activity of multiple cytokines; however, the mechanisms by which these cytokines contribute to disease pathogenesis are poorly understood. Here, we reveal a non-redundant role for steady-state IL-33 in supporting dysregulated myelopoiesis in a murine model of MPN. Genetic ablation of the IL-33 signaling pathway was sufficient and necessary to restore normal hematopoiesis and abrogate MPN-like disease in animals lacking the inositol phosphatase SHIP. Stromal cell–derived IL-33 stimulated the secretion of cytokines and growth factors by myeloid and non-hematopoietic cells of the BM, resulting in myeloproliferation in SHIP-deficient animals. Additionally, in the transgenic JAK2V617F model, the onset of MPN was delayed in animals lacking IL-33 in radio-resistant cells. In human BM, we detected increased numbers of IL-33–expressing cells, specifically in biopsies from MPN patients. Exogenous IL-33 promoted cytokine production and colony formation by primary CD34+ MPN stem/progenitor cells from patients. Moreover, IL-33 improved the survival of JAK2V617F-positive cell lines. Together, these data indicate a central role for IL-33 signaling in the pathogenesis of MPNs.

Authors

Lukas F. Mager, Carsten Riether, Christian M. Schürch, Yara Banz, Marie-Hélène Wasmer, Regula Stuber, Alexandre P. Theocharides, Xiaohong Li, Yu Xia, Hirohisa Saito, Susumu Nakae, Gabriela M. Baerlocher, Markus G. Manz, Kathy D. McCoy, Andrew J. Macpherson, Adrian F. Ochsenbein, Bruce Beutler, Philippe Krebs

×

Inducible Gata1 suppression expands megakaryocyte-erythroid progenitors from embryonic stem cells
Ji-Yoon Noh, … , Mortimer Poncz, Mitchell J. Weiss
Ji-Yoon Noh, … , Mortimer Poncz, Mitchell J. Weiss
Published May 11, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI77670.
View: Text | PDF

Inducible Gata1 suppression expands megakaryocyte-erythroid progenitors from embryonic stem cells

  • Text
  • PDF
Abstract

Transfusion of donor-derived platelets is commonly used for thrombocytopenia, which results from a variety of clinical conditions and relies on a constant donor supply due to the limited shelf life of these cells. Embryonic stem (ES) and induced pluripotent stem (iPS) cells represent a potential source of megakaryocytes and platelets for transfusion therapies; however, the majority of current ES/iPS cell differentiation protocols are limited by low yields of hematopoietic progeny. In both mice and humans, mutations in the gene-encoding transcription factor GATA1 cause an accumulation of proliferating, developmentally arrested megakaryocytes, suggesting that GATA1 suppression in ES and iPS cell–derived hematopoietic progenitors may enhance megakaryocyte production. Here, we engineered ES cells from WT mice to express a doxycycline-regulated (dox-regulated) shRNA that targets Gata1 transcripts for degradation. Differentiation of these cells in the presence of dox and thrombopoietin (TPO) resulted in an exponential (at least 1013-fold) expansion of immature hematopoietic progenitors. Dox withdrawal in combination with multilineage cytokines restored GATA1 expression, resulting in differentiation into erythroblasts and megakaryocytes. Following transfusion into recipient animals, these dox-deprived mature megakaryocytes generated functional platelets. Our findings provide a readily reproducible strategy to exponentially expand ES cell–derived megakaryocyte-erythroid progenitors that have the capacity to differentiate into functional platelet-producing megakaryocytes.

Authors

Ji-Yoon Noh, Shilpa Gandre-Babbe, Yuhuan Wang, Vincent Hayes, Yu Yao, Paul Gadue, Spencer K. Sullivan, Stella T. Chou, Kellie R. Machlus, Joseph E. Italiano Jr., Michael Kyba, David Finkelstein, Jacob C. Ulirsch, Vijay G. Sankaran, Deborah L. French, Mortimer Poncz, Mitchell J. Weiss

×

BCL11A deletions result in fetal hemoglobin persistence and neurodevelopmental alterations
Anindita Basak, … , Zdenek Sedlacek, Vijay G. Sankaran
Anindita Basak, … , Zdenek Sedlacek, Vijay G. Sankaran
Published May 4, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI81163.
View: Text | PDF

BCL11A deletions result in fetal hemoglobin persistence and neurodevelopmental alterations

  • Text
  • PDF
Abstract

A transition from fetal hemoglobin (HbF) to adult hemoglobin (HbA) normally occurs within a few months after birth. Increased production of HbF after this period of infancy ameliorates clinical symptoms of the major disorders of adult β-hemoglobin: β-thalassemia and sickle cell disease. The transcription factor BCL11A silences HbF and has been an attractive therapeutic target for increasing HbF levels; however, it is not clear to what extent BCL11A inhibits HbF production or mediates other developmental functions in humans. Here, we identified and characterized 3 patients with rare microdeletions of 2p15-p16.1 who presented with an autism spectrum disorder and developmental delay. Moreover, these patients all exhibited substantial persistence of HbF but otherwise retained apparently normal hematologic and immunologic function. Of the genes within 2p15-p16.1, only BCL11A was commonly deleted in all of the patients. Evaluation of gene expression data sets from developing and adult human brains revealed that BCL11A expression patterns are similar to other genes associated with neurodevelopmental disorders. Additionally, common SNPs within the second intron of BCL11A are strongly associated with schizophrenia. Together, the study of these rare patients and orthogonal genetic data demonstrates that BCL11A plays a central role in silencing HbF in humans and implicates BCL11A as an important factor for neurodevelopment.

Authors

Anindita Basak, Miroslava Hancarova, Jacob C. Ulirsch, Tugce B. Balci, Marie Trkova, Michal Pelisek, Marketa Vlckova, Katerina Muzikova, Jaroslav Cermak, Jan Trka, David A. Dyment, Stuart H. Orkin, Mark J. Daly, Zdenek Sedlacek, Vijay G. Sankaran

×

Poly(A)-specific ribonuclease deficiency impacts telomere biology and causes dyskeratosis congenita
Hemanth Tummala, … , Thomas Vulliamy, Inderjeet Dokal
Hemanth Tummala, … , Thomas Vulliamy, Inderjeet Dokal
Published April 20, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI78963.
View: Text | PDF

Poly(A)-specific ribonuclease deficiency impacts telomere biology and causes dyskeratosis congenita

  • Text
  • PDF
Abstract

Dyskeratosis congenita (DC) and related syndromes are inherited, life-threatening bone marrow (BM) failure disorders, and approximately 40% of cases are currently uncharacterized at the genetic level. Here, using whole exome sequencing (WES), we have identified biallelic mutations in the gene encoding poly(A)-specific ribonuclease (PARN) in 3 families with individuals exhibiting severe DC. PARN is an extensively characterized exonuclease with deadenylation activity that controls mRNA stability in part and therefore regulates expression of a large number of genes. The DC-associated mutations identified affect key domains within the protein, and evaluation of patient cells revealed reduced deadenylation activity. This deadenylation deficiency caused an early DNA damage response in terms of nuclear p53 regulation, cell-cycle arrest, and reduced cell viability upon UV treatment. Individuals with biallelic PARN mutations and PARN-depleted cells exhibited reduced RNA levels for several key genes that are associated with telomere biology, specifically TERC, DKC1, RTEL1, and TERF1. Moreover, PARN-deficient cells also possessed critically short telomeres. Collectively, these results identify a role for PARN in telomere maintenance and demonstrate that it is a disease-causing gene in a subset of patients with severe DC.

Authors

Hemanth Tummala, Amanda Walne, Laura Collopy, Shirleny Cardoso, Josu de la Fuente, Sarah Lawson, James Powell, Nicola Cooper, Alison Foster, Shehla Mohammed, Vincent Plagnol, Thomas Vulliamy, Inderjeet Dokal

×

Endothelium and NOTCH specify and amplify aorta-gonad-mesonephros–derived hematopoietic stem cells
Brandon K. Hadland, … , Shahin Rafii, Irwin D. Bernstein
Brandon K. Hadland, … , Shahin Rafii, Irwin D. Bernstein
Published April 13, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI80137.
View: Text | PDF

Endothelium and NOTCH specify and amplify aorta-gonad-mesonephros–derived hematopoietic stem cells

  • Text
  • PDF
Abstract

Hematopoietic stem cells (HSCs) first emerge during embryonic development within vessels such as the dorsal aorta of the aorta-gonad-mesonephros (AGM) region, suggesting that signals from the vascular microenvironment are critical for HSC development. Here, we demonstrated that AGM-derived endothelial cells (ECs) engineered to constitutively express AKT (AGM AKT-ECs) can provide an in vitro niche that recapitulates embryonic HSC specification and amplification. Specifically, nonengrafting embryonic precursors, including the VE-cadherin–expressing population that lacks hematopoietic surface markers, cocultured with AGM AKT-ECs specified into long-term, adult-engrafting HSCs, establishing that a vascular niche is sufficient to induce the endothelial-to-HSC transition in vitro. Subsequent to hematopoietic induction, coculture with AGM AKT-ECs also substantially increased the numbers of HSCs derived from VE-cadherin+CD45+ AGM hematopoietic cells, consistent with a role in supporting further HSC maturation and self-renewal. We also identified conditions that included NOTCH activation with an immobilized NOTCH ligand that were sufficient to amplify AGM-derived HSCs following their specification in the absence of AGM AKT-ECs. Together, these studies begin to define the critical niche components and resident signals required for HSC induction and self-renewal ex vivo, and thus provide insight for development of defined in vitro systems targeted toward HSC generation for therapeutic applications.

Authors

Brandon K. Hadland, Barbara Varnum-Finney, Michael G. Poulos, Randall T. Moon, Jason M. Butler, Shahin Rafii, Irwin D. Bernstein

×

Ash1l controls quiescence and self-renewal potential in hematopoietic stem cells
Morgan Jones, … , Sally A. Camper, Ivan Maillard
Morgan Jones, … , Sally A. Camper, Ivan Maillard
Published April 13, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI78124.
View: Text | PDF

Ash1l controls quiescence and self-renewal potential in hematopoietic stem cells

  • Text
  • PDF
Abstract

Rapidly cycling fetal and neonatal hematopoietic stem cells (HSCs) generate a pool of quiescent adult HSCs after establishing hematopoiesis in the bone marrow. We report an essential role for the trithorax group gene absent, small, or homeotic 1-like (Ash1l) at this developmental transition. Emergence and expansion of Ash1l-deficient fetal/neonatal HSCs were preserved; however, in young adult animals, HSCs were profoundly depleted. Ash1l-deficient adult HSCs had markedly decreased quiescence and reduced cyclin-dependent kinase inhibitor 1b/c (Cdkn1b/1c) expression and failed to establish long-term trilineage bone marrow hematopoiesis after transplantation to irradiated recipients. Wild-type HSCs could efficiently engraft when transferred to unirradiated, Ash1l-deficient recipients, indicating increased availability of functional HSC niches in these mice. Ash1l deficiency also decreased expression of multiple Hox genes in hematopoietic progenitors. Ash1l cooperated functionally with mixed-lineage leukemia 1 (Mll1), as combined loss of Ash1l and Mll1, but not isolated Ash1l or Mll1 deficiency, induced overt hematopoietic failure. Our results uncover a trithorax group gene network that controls quiescence, niche occupancy, and self-renewal potential in adult HSCs.

Authors

Morgan Jones, Jennifer Chase, Michelle Brinkmeier, Jing Xu, Daniel N. Weinberg, Julien Schira, Ann Friedman, Sami Malek, Jolanta Grembecka, Tomasz Cierpicki, Yali Dou, Sally A. Camper, Ivan Maillard

×

X-linked macrocytic dyserythropoietic anemia in females with an ALAS2 mutation
Vijay G. Sankaran, … , David F. Bishop, David P. Steensma
Vijay G. Sankaran, … , David F. Bishop, David P. Steensma
Published February 23, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI78619.
View: Text | PDF | Corrigendum

X-linked macrocytic dyserythropoietic anemia in females with an ALAS2 mutation

  • Text
  • PDF
Abstract

Macrocytic anemia with abnormal erythropoiesis is a common feature of megaloblastic anemias, congenital dyserythropoietic anemias, and myelodysplastic syndromes. Here, we characterized a family with multiple female individuals who have macrocytic anemia. The proband was noted to have dyserythropoiesis and iron overload. After an extensive diagnostic evaluation that did not provide insight into the cause of the disease, whole-exome sequencing of multiple family members revealed the presence of a mutation in the X chromosomal gene ALAS2, which encodes 5′-aminolevulinate synthase 2, in the affected females. We determined that this mutation (Y365C) impairs binding of the essential cofactor pyridoxal 5′-phosphate to ALAS2, resulting in destabilization of the enzyme and consequent loss of function. X inactivation was not highly skewed in wbc from the affected individuals. In contrast, and consistent with the severity of the ALAS2 mutation, there was a complete skewing toward expression of the WT allele in mRNA from reticulocytes that could be recapitulated in primary erythroid cultures. Together, the results of the X inactivation and mRNA studies illustrate how this X-linked dominant mutation in ALAS2 can perturb normal erythropoiesis through cell-nonautonomous effects. Moreover, our findings highlight the value of whole-exome sequencing in diagnostically challenging cases for the identification of disease etiology and extension of the known phenotypic spectrum of disease.

Authors

Vijay G. Sankaran, Jacob C. Ulirsch, Vassili Tchaikovskii, Leif S. Ludwig, Aoi Wakabayashi, Senkottuvelan Kadirvel, R. Coleman Lindsley, Rafael Bejar, Jiahai Shi, Scott B. Lovitch, David F. Bishop, David P. Steensma

×

Caspase-1–mediated pathway promotes generation of thromboinflammatory microparticles
Andrea S. Rothmeier, … , Zaverio M. Ruggeri, Wolfram Ruf
Andrea S. Rothmeier, … , Zaverio M. Ruggeri, Wolfram Ruf
Published February 23, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI79329.
View: Text | PDF

Caspase-1–mediated pathway promotes generation of thromboinflammatory microparticles

  • Text
  • PDF
Abstract

Extracellular ATP is a signal of tissue damage and induces macrophage responses that amplify inflammation and coagulation. Here we demonstrate that ATP signaling through macrophage P2X7 receptors uncouples the thioredoxin (TRX)/TRX reductase (TRXR) system and activates the inflammasome through endosome-generated ROS. TRXR and inflammasome activity promoted filopodia formation, cellular release of reduced TRX, and generation of extracellular thiol pathway–dependent, procoagulant microparticles (MPs). Additionally, inflammasome-induced activation of an intracellular caspase-1/calpain cysteine protease cascade degraded filamin, thereby severing bonds between the cytoskeleton and tissue factor (TF), the cell surface receptor responsible for coagulation activation. This cascade enabled TF trafficking from rafts to filopodia and ultimately onto phosphatidylserine-positive, highly procoagulant MPs. Furthermore, caspase-1 specifically facilitated cell surface actin exposure, which was required for the final release of highly procoagulant MPs from filopodia. Together, the results of this study delineate a thromboinflammatory pathway and suggest that components of this pathway have potential as pharmacological targets to simultaneously attenuate inflammation and innate immune cell–induced thrombosis.

Authors

Andrea S. Rothmeier, Patrizia Marchese, Brian G. Petrich, Christian Furlan-Freguia, Mark H. Ginsberg, Zaverio M. Ruggeri, Wolfram Ruf

×

RASA3 is a critical inhibitor of RAP1-dependent platelet activation
Lucia Stefanini, … , Luanne L. Peters, Wolfgang Bergmeier
Lucia Stefanini, … , Luanne L. Peters, Wolfgang Bergmeier
Published February 23, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI77993.
View: Text | PDF

RASA3 is a critical inhibitor of RAP1-dependent platelet activation

  • Text
  • PDF
Abstract

The small GTPase RAP1 is critical for platelet activation and thrombus formation. RAP1 activity in platelets is controlled by the GEF CalDAG-GEFI and an unknown regulator that operates downstream of the adenosine diphosphate (ADP) receptor, P2Y12, a target of antithrombotic therapy. Here, we provide evidence that the GAP, RASA3, inhibits platelet activation and provides a link between P2Y12 and activation of the RAP1 signaling pathway. In mice, reduced expression of RASA3 led to premature platelet activation and markedly reduced the life span of circulating platelets. The increased platelet turnover and the resulting thrombocytopenia were reversed by concomitant deletion of the gene encoding CalDAG-GEFI. Rasa3 mutant platelets were hyperresponsive to agonist stimulation, both in vitro and in vivo. Moreover, activation of Rasa3 mutant platelets occurred independently of ADP feedback signaling and was insensitive to inhibitors of P2Y12 or PI3 kinase. Together, our results indicate that RASA3 ensures that circulating platelets remain quiescent by restraining CalDAG-GEFI/RAP1 signaling and suggest that P2Y12 signaling is required to inhibit RASA3 and enable sustained RAP1-dependent platelet activation and thrombus formation at sites of vascular injury. These findings provide insight into the antithrombotic effect of P2Y12 inhibitors and may lead to improved diagnosis and treatment of platelet-related disorders.

Authors

Lucia Stefanini, David S. Paul, Raymond F. Robledo, E. Ricky Chan, Todd M. Getz, Robert A. Campbell, Daniel O. Kechele, Caterina Casari, Raymond Piatt, Kathleen M. Caron, Nigel Mackman, Andrew S. Weyrich, Matthew C. Parrott, Yacine Boulaftali, Mark D. Adams, Luanne L. Peters, Wolfgang Bergmeier

×
  • ← Previous
  • 1
  • 2
  • …
  • 22
  • 23
  • 24
  • …
  • 38
  • 39
  • Next →
Teasing apart active site contributions
Junsong Zhou, Yi Wu, and colleagues reveal that the C-terminal redox-active site of protein disulfide isomerase is essential for coagulation…
Published November 3, 2015
Scientific Show StopperHematology

PRMT5 keeps hematopoietic cells renewing
Fan Liu and colleagues demonstrate that the type II arginine methyltransferase PRMT5 is an important regulator of hematopoietic cell maintenance…
Published August 10, 2015
Scientific Show StopperHematology

Moving toward donor-independent platelets
Ji-Yoon Noh and colleagues use a fine-tuned approach to generate platelet-producing megakaryocyte-erythroid progenitors from murine embryonic stem cells…
Published May 11, 2015
Scientific Show StopperHematology

A family affair
Vijay Sankaran and colleagues demonstrate that a mutation in the X-chromosomal gene encoding aminolevulinic acid synthase underlies disease in a family with macrocytic anemia…
Published February 23, 2015
Scientific Show StopperHematology
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts