Glycogen synthase kinase–3 (GSK-3) is a widely expressed and highly conserved serine/threonine protein kinase encoded by 2 genes, GSK3A and GSK3B. GSK-3 is thought to be involved in tissue repair and fibrogenesis, but its role in these processes is currently unknown. To investigate the function of GSK-3β in fibroblasts, we generated mice harboring a fibroblast-specific deletion of Gsk3b and evaluated their wound-healing and fibrogenic responses. We have shown that Gsk3b-conditional-KO mice (Gsk3b-CKO mice) exhibited accelerated wound closure, increased fibrogenesis, and excessive scarring compared with control mice. In addition, Gsk3b-CKO mice showed elevated collagen production, decreased cell apoptosis, elevated levels of profibrotic α-SMA, and increased myofibroblast formation during wound healing. In cultured Gsk3b-CKO fibroblasts, adhesion, spreading, migration, and contraction were enhanced. Both Gsk3b-CKO mice and fibroblasts showed elevated expression and production of endothelin-1 (ET-1) compared with control mice and cells. Antagonizing ET-1 reversed the phenotype of Gsk3b-CKO fibroblasts and mice. Thus, GSK-3β appears to control the progression of wound healing and fibrosis by modulating ET-1 levels. These results suggest that targeting the GSK-3β pathway or ET-1 may be of benefit in controlling tissue repair and fibrogenic responses in vivo.
Mohit Kapoor, Shangxi Liu, Xu Shi-wen, Kun Huh, Matthew McCann, Christopher P. Denton, James R. Woodgett, David J. Abraham, Andrew Leask
Mohit Kapoor, Shangxi Liu, Xu Shi-wen, Kun Huh, Matthew McCann, Christopher P. Denton, James R. Woodgett, David J. Abraham, Andrew Leask
PKC isoforms t, α, and β play fundamental roles in the activation of T cells and other immune cell functions. Here we show that the PKC inhibitor AEB071 both abolishes the production of several cytokines by activated human T cells, keratinocytes, and macrophages in vitro and inhibits an acute allergic contact dermatitis response in rats. To translate these findings into humans, single and multiple ascending oral doses of AEB071 were administered to healthy volunteers and patients with psoriasis, respectively. AEB071 was well tolerated with no clinically relevant laboratory abnormalities. Ex vivo stimulation of lymphocytes from subjects exposed to single doses of AEB071 resulted in a dose-dependent inhibition of both lymphocyte proliferation and IL2 mRNA expression. Clinical severity of psoriasis was reduced up to 69% compared with baseline after 2 weeks of treatment, as measured by the Psoriasis Area Severity Index (PASI) score. The improvement in psoriasis patients was accompanied by histological improvement of skin lesions and may be partially explained by a substantial reduction of p40+ dermal cells, which are known to mediate psoriasis. These data suggest that AEB071 could be an effective novel treatment regimen for psoriasis and other autoimmune diseases, and that AEB071 warrants long-term studies to establish safety and efficacy.
Hans Skvara, Markus Dawid, Elise Kleyn, Barbara Wolff, Josef G. Meingassner, Hilary Knight, Thomas Dumortier, Tamara Kopp, Nasanin Fallahi, Georg Stary, Christoph Burkhart, Olivier Grenet, Juergen Wagner, Youssef Hijazi, Randall E. Morris, Claire McGeown, Christiane Rordorf, Christopher E.M. Griffiths, Georg Stingl, Thomas Jung
Dysfunctional Tregs have been identified in individuals with psoriasis. However, their role in the pathogenesis of the disease remains unclear. Here we explored the effect of diminished CD18 (β2 integrin) expression on the function of CD4+CD25+CD127– Tregs using the Cd18 hypomorphic (Cd18hypo) PL/J mouse model of psoriasis that closely resembles the human disease. We found that reduced CD18 expression impaired cell-cell contact between Tregs and DCs. This led to dysfunctional Tregs, which both failed to suppress the pathogenic T cells and promoted the onset and severity of the disease. This failure was TGF-β–dependent, as Tregs derived from Cd18hypo PL/J mice had diminished TGF-β1 expression. Adoptive transfer of Tregs expressing wild-type levels of CD18 into affected Cd18hypo PL/J mice resulted in a substantial improvement of the psoriasiform skin disease, which did not occur upon coinjection of the cells with TGF-β–specific neutralizing antibody. Our data indicate a primary dysfunction of Cd18hypo Tregs, allowing subsequent hyperproliferation of pathogenic T cells in the Cd18hypo PL/J mouse model of psoriasis. This study may provide a step forward in our understanding of the unique role of CD18 expression levels in avoiding autoimmunity.
Honglin Wang, Thorsten Peters, Anca Sindrilaru, Daniel Kess, Tsvetelina Oreshkova, Xue-Zhong Yu, Anne Maria Seier, Heike Schreiber, Meinhard Wlaschek, Robert Blakytny, Jan Röhrbein, Guido Schulz, Johannes M. Weiss, Karin Scharffetter-Kochanek
Dystrophic epidermolysis bullosa (DEB) is a severe skin fragility disorder associated with trauma-induced blistering, progressive soft tissue scarring, and increased risk of skin cancer. DEB is caused by mutations in type VII collagen. In this study, we describe the generation of a collagen VII hypomorphic mouse that serves as an immunocompetent animal model for DEB. These mice expressed collagen VII at about 10% of normal levels, and their phenotype closely resembled characteristics of severe human DEB, including mucocutaneous blistering, nail dystrophy, and mitten deformities of the extremities. The oral blistering experienced by these mice resulted in growth retardation, and repeated blistering led to excessive induction of tissue repair, causing TGF-β1–mediated contractile fibrosis generated by myofibroblasts and pseudosyndactyly in the extremities. Intradermal injection of WT fibroblasts resulted in neodeposition of collagen VII and functional restoration of the dermal-epidermal junction. Treated areas were also resistant to induced frictional stress. In contrast, untreated areas of the same mouse showed dermal-epidermal separation following induced stress. These data demonstrate that fibroblast-based treatment can be used to treat DEB in a mouse model and suggest that this approach may be effective in the development of clinical therapeutic regimens for patients with DEB.
Anja Fritsch, Stefan Loeckermann, Johannes S. Kern, Attila Braun, Michael R. Bösl, Thorsten A. Bley, Hauke Schumann, Dominik von Elverfeldt, Dominik Paul, Miriam Erlacher, Dirk Berens von Rautenfeld, Ingrid Hausser, Reinhard Fässler, Leena Bruckner-Tuderman
13-cis retinoic acid (13-cis RA; also known as isotretinoin), is the most potent agent available for treatment of acne. It is known that the drug induces apoptosis in cells cultured from human sebaceous glands, but its mechanism of action has not been determined. In this study, skin biopsies were taken from 7 patients with acne prior to and at 1 week of treatment with 13-cis RA. TUNEL staining confirmed that 13-cis RA induced apoptosis in sebaceous glands. Transcriptional profiling of patient skin and cultured human sebaceous gland cells (SEB-1 sebocytes) indicated that lipocalin 2 was among the genes most highly upregulated by 13-cis RA. Lipocalin 2 encodes neutrophil gelatinase–associated lipocalin (NGAL), which functions in innate immune defense and induces apoptosis of murine B lymphocytes. Increased immunolocalization of NGAL was noted in patients’ sebaceous glands following treatment with 13-cis RA, and recombinant NGAL induced apoptosis in SEB-1 sebocytes. Furthermore, apoptosis in response to 13-cis RA was inhibited in the presence of siRNA to lipocalin 2. These data indicate that NGAL mediates the apoptotic effect of 13-cis RA and suggest that agents that selectively induce NGAL expression in sebaceous glands might represent therapeutic alternatives to the use of 13-cis RA to treat individuals with acne.
Amanda M. Nelson, Wei Zhao, Kathryn L. Gilliland, Andrea L. Zaenglein, Wenlei Liu, Diane M. Thiboutot
Effective reepithelialization after injury is essential for correct wound healing. The upregulation of keratinocyte α3β1 integrin during reepithelialization suggests that this adhesion molecule is involved in wound healing; however, its precise role in this process is unknown. We have shown here that retarded reepithelialization in Itga3–/– mouse skin wounds is due predominantly to repressed TGF-β1–mediated responses. Specifically, expression of the inhibitor of TGF-β1–signaling Smad7 was elevated in Itga3–/– keratinocytes. Indeed, in vivo blockade of Smad7 increased the rate of reepithelialization in Itga3–/– and WT wounds to similar levels. Our data therefore indicate that the function of α3β1 integrin as a mediator of keratinocyte migration is not essential for reepithelialization but suggest instead that α3β1 integrin has a major new in vivo role as an inhibitor of Smad7 during wound healing. Moreover, our study may identify a previously undocumented function for Smad7 as a regulator of reepithelialization in vivo and implicates Smad7 as a potential novel target for the treatment of cutaneous wounds.
Louise E. Reynolds, Francesco J. Conti, Rita Silva, Stephen D. Robinson, Vandana Iyer, Rob Rudling, Barbara Cross, Emma Nye, Ian R. Hart, C. Michael DiPersio, Kairbaan M. Hodivala-Dilke
Psoriasis is a chronic skin disease resulting from the dysregulated interplay between keratinocytes and infiltrating immune cells. We report on a psoriasis-like disease model, which is induced by the transfer of CD4+CD45RBhiCD25– cells to pathogen-free scid/scid mice. Psoriasis-like lesions had elevated levels of antimicrobial peptide and proinflammatory cytokine mRNA. Also, similar to psoriasis, disease progression in this model was dependent on the p40 common to IL-12 and IL-23. To investigate the role of IL-22, a Th17 cytokine, in disease progression, mice were treated with IL-22–neutralizing antibodies. Neutralization of IL-22 prevented the development of disease, reducing acanthosis (thickening of the skin), inflammatory infiltrates, and expression of Th17 cytokines. Direct administration of IL-22 into the skin of normal mice induced both antimicrobial peptide and proinflammatory cytokine gene expression. Our data suggest that IL-22, which acts on keratinocytes and other nonhematopoietic cells, is required for development of the autoreactive Th17 cell–dependent disease in this model of skin inflammation. We propose that IL-22 antagonism might be a promising therapy for the treatment of human psoriasis.
Hak-Ling Ma, Spencer Liang, Jing Li, Lee Napierata, Tom Brown, Stephen Benoit, Mayra Senices, Davinder Gill, Kyriaki Dunussi-Joannopoulos, Mary Collins, Cheryl Nickerson-Nutter, Lynette A. Fouser, Deborah A. Young
Glucocorticoids (GCs) are widely used in the treatment of allergic skin conditions despite having numerous side effects. Here we use Cre/loxP-engineered tissue- and cell-specific and function-selective GC receptor (GR) mutant mice to identify responsive cell types and molecular mechanisms underlying the antiinflammatory activity of GCs in contact hypersensitivity (CHS). CHS was repressed by GCs only at the challenge phase, i.e., during reexposure to the hapten. Inactivation of the GR gene in keratinocytes or T cells of mutant mice did not attenuate the effects of GCs, but its ablation in macrophages and neutrophils abolished downregulation of the inflammatory response. Moreover, mice expressing a DNA binding–defective GR were also resistant to GC treatment. The persistent infiltration of macrophages and neutrophils in these mice is explained by an impaired repression of inflammatory cytokines and chemokines such as IL-1β, monocyte chemoattractant protein-1, macrophage inflammatory protein-2, and IFN-γ–inducible protein 10. In contrast TNF-α repression remained intact. Consequently, injection of recombinant proteins of these cytokines and chemokines partially reversed suppression of CHS by GCs. These studies provide evidence that in contact allergy, therapeutic action of corticosteroids is in macrophages and neutrophils and that dimerization GR is required.
Jan P. Tuckermann, Anna Kleiman, Richard Moriggl, Rainer Spanbroek, Anita Neumann, Anett Illing, Björn E. Clausen, Brenda Stride, Irmgard Förster, Andreas J.R. Habenicht, Holger M. Reichardt, François Tronche, Wolfgang Schmid, Günther Schütz
An essential element of the innate immune response to injury is the capacity to recognize microbial invasion and stimulate production of antimicrobial peptides. We investigated how this process is controlled in the epidermis. Keratinocytes surrounding a wound increased expression of the genes coding for the microbial pattern recognition receptors CD14 and TLR2, complementing an increase in cathelicidin antimicrobial peptide expression. These genes were induced by 1,25(OH)2 vitamin D3 (1,25D3; its active form), suggesting a role for vitamin D3 in this process. How 1,25D3 could participate in the injury response was explained by findings that the levels of CYP27B1, which converts 25OH vitamin D3 (25D3) to active 1,25D3, were increased in wounds and induced in keratinocytes in response to TGF-β1. Blocking the vitamin D receptor, inhibiting CYP27B1, or limiting 25D3 availability prevented TGF-β1 from inducing cathelicidin, CD14, or TLR2 in human keratinocytes, while CYP27B1-deficient mice failed to increase CD14 expression following wounding. The functional consequence of these observations was confirmed by demonstrating that 1,25D3 enabled keratinocytes to recognize microbial components through TLR2 and respond by cathelicidin production. Thus, we demonstrate what we believe to be a previously unexpected role for vitamin D3 in innate immunity, enabling keratinocytes to recognize and respond to microbes and to protect wounds against infection.
Jürgen Schauber, Robert A. Dorschner, Alvin B. Coda, Amanda S. Büchau, Philip T. Liu, David Kiken, Yolanda R. Helfrich, Sewon Kang, Hashem Z. Elalieh, Andreas Steinmeyer, Ulrich Zügel, Daniel D. Bikle, Robert L. Modlin, Richard L. Gallo