Tumor angiogenesis is critical for cancer progression. In multiple murine models, endothelium-specific epsin deficiency abrogates tumor progression by shifting the balance of VEGFR2 signaling toward uncontrolled tumor angiogenesis, resulting in dysfunctional tumor vasculature. Here, we designed a tumor endothelium–targeting chimeric peptide (UPI) for the purpose of inhibiting endogenous tumor endothelial epsins by competitively binding activated VEGFR2. We determined that the UPI peptide specifically targets tumor endothelial VEGFR2 through an unconventional binding mechanism that is driven by unique residues present only in the epsin ubiquitin–interacting motif (UIM) and the VEGFR2 kinase domain. In murine models of neoangiogenesis, UPI peptide increased VEGF-driven angiogenesis and neovascularization but spared quiescent vascular beds. Further, in tumor-bearing mice, UPI peptide markedly impaired functional tumor angiogenesis, tumor growth, and metastasis, resulting in a notable increase in survival. Coadministration of UPI peptide with cytotoxic chemotherapeutics further sustained tumor inhibition. Equipped with localized tumor endothelium–specific targeting, our UPI peptide provides potential for an effective and alternative cancer therapy.
Yunzhou Dong, Hao Wu, H.N. Ashiqur Rahman, Yanjun Liu, Satish Pasula, Kandice L. Tessneer, Xiaofeng Cai, Xiaolei Liu, Baojun Chang, John McManus, Scott Hahn, Jiali Dong, Megan L. Brophy, Lili Yu, Kai Song, Robert Silasi-Mansat, Debra Saunders, Charity Njoku, Hoogeun Song, Padmaja Mehta-D’Souza, Rheal Towner, Florea Lupu, Rodger P. McEver, Lijun Xia, Derek Boerboom, R. Sathish Srinivasan, Hong Chen
Lung transplantation is the only viable option for patients suffering from otherwise incurable end-stage pulmonary diseases such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Despite aggressive immunosuppression, acute rejection of the lung allograft occurs in over half of transplant recipients, and the factors that promote lung acceptance are poorly understood. The contribution of lymphatic vessels to transplant pathophysiology remains controversial, and data that directly address the exact roles of lymphatic vessels in lung allograft function and survival are limited. Here, we have shown that there is a marked decline in the density of lymphatic vessels, accompanied by accumulation of low-MW hyaluronan (HA) in mouse orthotopic allografts undergoing rejection. We found that stimulation of lymphangiogenesis with VEGF-C156S, a mutant form of VEGF-C with selective VEGFR-3 binding, alleviates an established rejection response and improves clearance of HA from the lung allograft. Longitudinal analysis of transbronchial biopsies from human lung transplant recipients demonstrated an association between resolution of acute lung rejection and decreased HA in the graft tissue. Taken together, these results indicate that lymphatic vessel formation after lung transplantation mediates HA drainage and suggest that treatments to stimulate lymphangiogenesis have promise for improving graft outcomes.
Ye Cui, Kaifeng Liu, Maria E. Monzon-Medina, Robert F. Padera, Hao Wang, Gautam George, Demet Toprak, Elie Abdelnour, Emmanuel D’Agostino, Hilary J. Goldberg, Mark A. Perrella, Rosanna Malbran Forteza, Ivan O. Rosas, Gary Visner, Souheil El-Chemaly
A high intake of dietary salt (NaCl) has been implicated in the development of hypertension, chronic inflammation, and autoimmune diseases. We have recently shown that salt has a proinflammatory effect and boosts the activation of Th17 cells and the activation of classical, LPS-induced macrophages (M1). Here, we examined how the activation of alternative (M2) macrophages is affected by salt. In stark contrast to Th17 cells and M1 macrophages, high salt blunted the alternative activation of BM-derived mouse macrophages stimulated with IL-4 and IL-13, M(IL-4+IL-13) macrophages. Salt-induced reduction of M(IL-4+IL-13) activation was not associated with increased polarization toward a proinflammatory M1 phenotype. In vitro, high salt decreased the ability of M(IL-4+IL-13) macrophages to suppress effector T cell proliferation. Moreover, mice fed a high salt diet exhibited reduced M2 activation following chitin injection and delayed wound healing compared with control animals. We further identified a high salt–induced reduction in glycolysis and mitochondrial metabolic output, coupled with blunted AKT and mTOR signaling, which indicates a mechanism by which NaCl inhibits full M2 macrophage activation. Collectively, this study provides evidence that high salt reduces noninflammatory innate immune cell activation and may thus lead to an overall imbalance in immune homeostasis.
Katrina J. Binger, Matthias Gebhardt, Matthias Heinig, Carola Rintisch, Agnes Schroeder, Wolfgang Neuhofer, Karl Hilgers, Arndt Manzel, Christian Schwartz, Markus Kleinewietfeld, Jakob Voelkl, Valentin Schatz, Ralf A. Linker, Florian Lang, David Voehringer, Mark D. Wright, Norbert Hubner, Ralf Dechend, Jonathan Jantsch, Jens Titze, Dominik N. Müller
Cardiomyopathy is a common human disorder that is characterized by contractile dysfunction and cardiac remodeling. Genetic mutations and altered expression of genes encoding many signaling molecules and contractile proteins are associated with cardiomyopathy; however, how cardiomyocytes sense pathophysiological stresses in order to then modulate cardiac remodeling remains poorly understood. Here, we have described a regulator in the heart that harmonizes the progression of cardiac hypertrophy and dilation. We determined that expression of the myocyte-enriched protein cardiac ISL1-interacting protein (CIP, also known as MLIP) is reduced in patients with dilated cardiomyopathy. As CIP is highly conserved between human and mouse, we evaluated the effects of CIP deficiency on cardiac remodeling in mice. Deletion of the CIP-encoding gene accelerated progress from hypertrophy to heart failure in several cardiomyopathy models. Conversely, transgenic and AAV-mediated CIP overexpression prevented pathologic remodeling and preserved cardiac function. CIP deficiency combined with lamin A/C deletion resulted in severe dilated cardiomyopathy and cardiac dysfunction in the absence of stress. Transcriptome analyses of CIP-deficient hearts revealed that the p53- and FOXO1-mediated gene networks related to homeostasis are disturbed upon pressure overload stress. Moreover, FOXO1 overexpression suppressed stress-induced cardiomyocyte hypertrophy in CIP-deficient cardiomyocytes. Our studies identify CIP as a key regulator of cardiomyopathy that has potential as a therapeutic target to attenuate heart failure progression.
Zhan-Peng Huang, Masaharu Kataoka, Jinghai Chen, Gengze Wu, Jian Ding, Mao Nie, Zhiqiang Lin, Jianming Liu, Xiaoyun Hu, Lixin Ma, Bin Zhou, Hiroko Wakimoto, Chunyu Zeng, Jan Kyselovic, Zhong-Liang Deng, Christine E. Seidman, J.G. Seidman, William T. Pu, Da-Zhi Wang
Recent genome-wide association studies have revealed that variations near the gene locus encoding the transcription factor Krüppel-like factor 14 (
Yanhong Guo, Yanbo Fan, Jifeng Zhang, Gwen A. Lomberk, Zhou Zhou, Lijie Sun, Angela J. Mathison, Minerva T. Garcia-Barrio, Ji Zhang, Lixia Zeng, Lei Li, Subramaniam Pennathur, Cristen J. Willer, Daniel J. Rader, Raul Urrutia, Y. Eugene Chen
Mitochondrial homeostasis is critical for tissue health, and mitochondrial dysfunction contributes to numerous diseases, including heart failure. Here, we have shown that the transcription factor Kruppel-like factor 4 (KLF4) governs mitochondrial biogenesis, metabolic function, dynamics, and autophagic clearance. Adult mice with cardiac-specific
Xudong Liao, Rongli Zhang, Yuan Lu, Domenick A. Prosdocimo, Panjamaporn Sangwung, Lilei Zhang, Guangjin Zhou, Puneet Anand, Ling Lai, Teresa C. Leone, Hisashi Fujioka, Fang Ye, Mariana G. Rosca, Charles L. Hoppel, P. Christian Schulze, E. Dale Abel, Jonathan S. Stamler, Daniel P. Kelly, Mukesh K. Jain
Fluid shear forces have established roles in blood vascular development and function, but whether such forces similarly influence the low-flow lymphatic system is unknown. It has been difficult to test the contribution of fluid forces in vivo because mechanical or genetic perturbations that alter flow often have direct effects on vessel growth. Here, we investigated the functional role of flow in lymphatic vessel development using mice deficient for the platelet-specific receptor C-type lectin–like receptor 2 (CLEC2) as blood backfills the lymphatic network and blocks lymph flow in these animals. CLEC2-deficient animals exhibited normal growth of the primary mesenteric lymphatic plexus but failed to form valves in these vessels or remodel them into a structured, hierarchical network. Smooth muscle cell coverage (SMC coverage) of CLEC2-deficient lymphatic vessels was both premature and excessive, a phenotype identical to that observed with loss of the lymphatic endothelial transcription factor FOXC2. In vitro evaluation of lymphatic endothelial cells (LECs) revealed that low, reversing shear stress is sufficient to induce expression of genes required for lymphatic valve development and identified GATA2 as an upstream transcriptional regulator of FOXC2 and the lymphatic valve genetic program. These studies reveal that lymph flow initiates and regulates many of the key steps in collecting lymphatic vessel maturation and development.
Daniel T. Sweet, Juan M. Jiménez, Jeremy Chang, Paul R. Hess, Patricia Mericko-Ishizuka, Jianxin Fu, Lijun Xia, Peter F. Davies, Mark L. Kahn
Ischemic injury in the heart induces an inflammatory cascade that both repairs damage and exacerbates scar tissue formation. Cardiosphere-derived cells (CDCs) are a stem-like population that is derived ex vivo from cardiac biopsies; they confer both cardioprotection and regeneration in acute myocardial infarction (MI). While the regenerative effects of CDCs in chronic settings have been studied extensively, little is known about how CDCs confer the cardioprotective process known as cellular postconditioning. Here, we used an in vivo rat model of ischemia/reperfusion (IR) injury–induced MI and in vitro coculture assays to investigate how CDCs protect stressed cardiomyocytes. Compared with control animals, animals that received CDCs 20 minutes after IR had reduced infarct size when measured at 48 hours. CDCs modified the myocardial leukocyte population after ischemic injury. Specifically, introduction of CDCs reduced the number of CD68+ macrophages, and these CDCs secreted factors that polarized macrophages toward a distinctive cardioprotective phenotype that was not M1 or M2. Systemic depletion of macrophages with clodronate abolished CDC-mediated cardioprotection. Using both in vitro coculture assays and a rat model of adoptive transfer after IR, we determined that CDC-conditioned macrophages attenuated cardiomyocyte apoptosis and reduced infarct size, thereby recapitulating the beneficial effects of CDC therapy. Together, our data indicate that CDCs limit acute injury by polarizing an effector macrophage population within the heart.
Geoffrey de Couto, Weixin Liu, Eleni Tseliou, Baiming Sun, Nupur Makkar, Hideaki Kanazawa, Moshe Arditi, Eduardo Marbán
The sinoatrial node (SAN) maintains a rhythmic heartbeat; therefore, a better understanding of factors that drive SAN development and function is crucial to generation of potential therapies, such as biological pacemakers, for sinus arrhythmias. Here, we determined that the LIM homeodomain transcription factor ISL1 plays a key role in survival, proliferation, and function of pacemaker cells throughout development. Analysis of several
Xingqun Liang, Qingquan Zhang, Paola Cattaneo, Shaowei Zhuang, Xiaohui Gong, Nathanael J. Spann, Cizhong Jiang, Xinkai Cao, Xiaodong Zhao, Xiaoli Zhang, Lei Bu, Gang Wang, H.S. Vincent Chen, Tao Zhuang, Jie Yan, Peng Geng, Lina Luo, Indroneal Banerjee, Yihan Chen, Christopher K. Glass, Alexander C. Zambon, Ju Chen, Yunfu Sun, Sylvia M. Evans
Stephen E. Boag, Rajiv Das, Evgeniya V. Shmeleva, Alan Bagnall, Mohaned Egred, Nicholas Howard, Karim Bennaceur, Azfar Zaman, Bernard Keavney, Ioakim Spyridopoulos