Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

  • 485 Articles
  • 3 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 15
  • 16
  • 17
  • …
  • 48
  • 49
  • Next →
Axial tubule junctions control rapid calcium signaling in atria
Sören Brandenburg, … , W. Jonathan Lederer, Stephan E. Lehnart
Sören Brandenburg, … , W. Jonathan Lederer, Stephan E. Lehnart
Published September 19, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI88241.
View: Text | PDF

Axial tubule junctions control rapid calcium signaling in atria

  • Text
  • PDF
Abstract

The canonical atrial myocyte (AM) is characterized by sparse transverse tubule (TT) invaginations and slow intracellular Ca2+ propagation but exhibits rapid contractile activation that is susceptible to loss of function during hypertrophic remodeling. Here, we have identified a membrane structure and Ca2+-signaling complex that may enhance the speed of atrial contraction independently of phospholamban regulation. This axial couplon was observed in human and mouse atria and is composed of voluminous axial tubules (ATs) with extensive junctions to the sarcoplasmic reticulum (SR) that include ryanodine receptor 2 (RyR2) clusters. In mouse AM, AT structures triggered Ca2+ release from the SR approximately 2 times faster at the AM center than at the surface. Rapid Ca2+ release correlated with colocalization of highly phosphorylated RyR2 clusters at AT-SR junctions and earlier, more rapid shortening of central sarcomeres. In contrast, mice expressing phosphorylation-incompetent RyR2 displayed depressed AM sarcomere shortening and reduced in vivo atrial contractile function. Moreover, left atrial hypertrophy led to AT proliferation, with a marked increase in the highly phosphorylated RyR2-pS2808 cluster fraction, thereby maintaining cytosolic Ca2+ signaling despite decreases in RyR2 cluster density and RyR2 protein expression. AT couplon “super-hubs” thus underlie faster excitation-contraction coupling in health as well as hypertrophic compensatory adaptation and represent a structural and metabolic mechanism that may contribute to contractile dysfunction and arrhythmias.

Authors

Sören Brandenburg, Tobias Kohl, George S.B. Williams, Konstantin Gusev, Eva Wagner, Eva A. Rog-Zielinska, Elke Hebisch, Miroslav Dura, Michael Didié, Michael Gotthardt, Viacheslav O. Nikolaev, Gerd Hasenfuss, Peter Kohl, Christopher W. Ward, W. Jonathan Lederer, Stephan E. Lehnart

×

Optogenetic defibrillation terminates ventricular arrhythmia in mouse hearts and human simulations
Tobias Bruegmann, … , Natalia A. Trayanova, Philipp Sasse
Tobias Bruegmann, … , Natalia A. Trayanova, Philipp Sasse
Published September 12, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI88950.
View: Text | PDF

Optogenetic defibrillation terminates ventricular arrhythmia in mouse hearts and human simulations

  • Text
  • PDF
Abstract

Ventricular arrhythmias are among the most severe complications of heart disease and can result in sudden cardiac death. Patients at risk currently receive implantable defibrillators that deliver electrical shocks to terminate arrhythmias on demand. However, strong electrical shocks can damage the heart and cause severe pain. Therefore, we have tested optogenetic defibrillation using expression of the light-sensitive channel channelrhodopsin-2 (ChR2) in cardiac tissue. Epicardial illumination effectively terminated ventricular arrhythmias in hearts from transgenic mice and from WT mice after adeno-associated virus–based gene transfer of ChR2. We also explored optogenetic defibrillation for human hearts, taking advantage of a recently developed, clinically validated in silico approach for simulating infarct-related ventricular tachycardia (VT). Our analysis revealed that illumination with red light effectively terminates VT in diseased, ChR2-expressing human hearts. Mechanistically, we determined that the observed VT termination is due to ChR2-mediated transmural depolarization of the myocardium, which causes a block of voltage-dependent Na+ channels throughout the myocardial wall and interrupts wavefront propagation into illuminated tissue. Thus, our results demonstrate that optogenetic defibrillation is highly effective in the mouse heart and could potentially be translated into humans to achieve nondamaging and pain-free termination of ventricular arrhythmia.

Authors

Tobias Bruegmann, Patrick M. Boyle, Christoph C. Vogt, Thomas V. Karathanos, Hermenegild J. Arevalo, Bernd K. Fleischmann, Natalia A. Trayanova, Philipp Sasse

×

Tyrosine kinase FYN negatively regulates NOX4 in cardiac remodeling
Shouji Matsushima, … , Hiroyuki Tsutsui, Junichi Sadoshima
Shouji Matsushima, … , Hiroyuki Tsutsui, Junichi Sadoshima
Published August 15, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI85624.
View: Text | PDF

Tyrosine kinase FYN negatively regulates NOX4 in cardiac remodeling

  • Text
  • PDF
Abstract

NADPH oxidases (Noxes) produce ROS that regulate cell growth and death. NOX4 expression in cardiomyocytes (CMs) plays an important role in cardiac remodeling and injury, but the posttranslational mechanisms that modulate this enzyme are poorly understood. Here, we determined that FYN, a Src family tyrosine kinase, interacts with the C-terminal domain of NOX4. FYN and NOX4 colocalized in perinuclear mitochondria, ER, and nuclear fractions in CMs, and FYN expression negatively regulated NOX4-induced O2– production and apoptosis in CMs. Mechanistically, we found that direct phosphorylation of tyrosine 566 on NOX4 was critical for this FYN-mediated negative regulation. Transverse aortic constriction activated FYN in the left ventricle (LV), and FYN-deficient mice displayed exacerbated cardiac hypertrophy and dysfunction and increased ROS production and apoptosis. Deletion of Nox4 rescued the exaggerated LV remodeling in FYN-deficient mice. Furthermore, FYN expression was markedly decreased in failing human hearts, corroborating its role as a regulator of cardiac cell death and ROS production. In conclusion, FYN is activated by oxidative stress and serves as a negative feedback regulator of NOX4 in CMs during cardiac remodeling.

Authors

Shouji Matsushima, Junya Kuroda, Peiyong Zhai, Tong Liu, Shohei Ikeda, Narayani Nagarajan, Shin-ichi Oka, Takashi Yokota, Shintaro Kinugawa, Chiao-Po Hsu, Hong Li, Hiroyuki Tsutsui, Junichi Sadoshima

×

Developmental SHP2 dysfunction underlies cardiac hypertrophy in Noonan syndrome with multiple lentigines
Jessica Lauriol, … , Kyu-Ho Lee, Maria I. Kontaridis
Jessica Lauriol, … , Kyu-Ho Lee, Maria I. Kontaridis
Published June 27, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI80396.
View: Text | PDF

Developmental SHP2 dysfunction underlies cardiac hypertrophy in Noonan syndrome with multiple lentigines

  • Text
  • PDF
Abstract

Hypertrophic cardiomyopathy is a common cause of mortality in congenital heart disease (CHD). Many gene abnormalities are associated with cardiac hypertrophy, but their function in cardiac development is not well understood. Loss-of-function mutations in PTPN11, which encodes the protein tyrosine phosphatase (PTP) SHP2, are implicated in CHD and cause Noonan syndrome with multiple lentigines (NSML), a condition that often presents with cardiac hypertrophic defects. Here, we found that NSML-associated hypertrophy stems from aberrant signaling mechanisms originating in developing endocardium. Trabeculation and valvular hyperplasia were diminished in hearts of embryonic mice expressing a human NSML-associated variant of SHP2, and these defects were recapitulated in mice expressing NSML-associated SHP2 specifically in endothelial, but not myocardial or neural crest, cells. In contrast, mice with myocardial- but not endothelial-specific NSML SHP2 expression developed ventricular septal defects, suggesting that NSML-associated mutations have both cell-autonomous and nonautonomous functions in cardiac development. However, only endothelial-specific expression of NSML-associated SHP2 induced adult-onset cardiac hypertrophy. Further, embryos expressing the NSML-associated SHP2 mutation exhibited aberrant AKT activity and decreased downstream forkhead box P1 (FOXP1)/FGF and NOTCH1/EPHB2 signaling, indicating that SHP2 is required for regulating reciprocal crosstalk between developing endocardium and myocardium. Together, our data provide functional and disease-based evidence that aberrant SHP2 signaling during cardiac development leads to CHD and adult-onset heart hypertrophy.

Authors

Jessica Lauriol, Janel R. Cabrera, Ashbeel Roy, Kimberly Keith, Sara M. Hough, Federico Damilano, Bonnie Wang, Gabriel C. Segarra, Meaghan E. Flessa, Lauren E. Miller, Saumya Das, Roderick Bronson, Kyu-Ho Lee, Maria I. Kontaridis

×

Probing chromatin landscape reveals roles of endocardial TBX20 in septation
Cornelis J. Boogerd, … , Marcelo A. Nobrega, Sylvia M. Evans
Cornelis J. Boogerd, … , Marcelo A. Nobrega, Sylvia M. Evans
Published June 27, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI85350.
View: Text | PDF

Probing chromatin landscape reveals roles of endocardial TBX20 in septation

  • Text
  • PDF
Abstract

Mutations in the T-box transcription factor TBX20 are associated with multiple forms of congenital heart defects, including cardiac septal abnormalities, but our understanding of the contributions of endocardial TBX20 to heart development remains incomplete. Here, we investigated how TBX20 interacts with endocardial gene networks to drive the mesenchymal and myocardial movements that are essential for outflow tract and atrioventricular septation. Selective ablation of Tbx20 in murine endocardial lineages reduced the expression of extracellular matrix and cell migration genes that are critical for septation. Using the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq), we identified accessible chromatin within endocardial lineages and intersected these data with TBX20 ChIP-seq and chromatin loop maps to determine that TBX20 binds a conserved long-range enhancer to regulate versican (Vcan) expression. We also observed reduced Vcan expression in Tbx20-deficient mice, supporting a direct role for TBX20 in Vcan regulation. Further, we show that the Vcan enhancer drove reporter gene expression in endocardial lineages in a TBX20–binding site–dependent manner. This work illuminates gene networks that interact with TBX20 to orchestrate cardiac septation and provides insight into the chromatin landscape of endocardial lineages during septation.

Authors

Cornelis J. Boogerd, Ivy Aneas, Noboru Sakabe, Ralph J. Dirschinger, Quen J. Cheng, Bin Zhou, Ju Chen, Marcelo A. Nobrega, Sylvia M. Evans

×

Alternatively activated macrophages determine repair of the infarcted adult murine heart
Manabu Shiraishi, … , Kenta Yashiro, Ken Suzuki
Manabu Shiraishi, … , Kenta Yashiro, Ken Suzuki
Published May 3, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI85782.
View: Text | PDF

Alternatively activated macrophages determine repair of the infarcted adult murine heart

  • Text
  • PDF
Abstract

Alternatively activated (also known as M2) macrophages are involved in the repair of various types of organs. However, the contribution of M2 macrophages to cardiac repair after myocardial infarction (MI) remains to be fully characterized. Here, we identified CD206+F4/80+CD11b+ M2-like macrophages in the murine heart and demonstrated that this cell population predominantly increases in the infarct area and exhibits strengthened reparative abilities after MI. We evaluated mice lacking the kinase TRIB1 (Trib1–/–), which exhibit a selective depletion of M2 macrophages after MI. Compared with control animals, Trib1–/– mice had a catastrophic prognosis, with frequent cardiac rupture, as the result of markedly reduced collagen fibril formation in the infarct area due to impaired fibroblast activation. The decreased tissue repair observed in Trib1–/– mice was entirely rescued by an external supply of M2-like macrophages. Furthermore, IL-1α and osteopontin were suggested to be mediators of M2-like macrophage–induced fibroblast activation. In addition, IL-4 administration achieved a targeted increase in the number of M2-like macrophages and enhanced the post-MI prognosis of WT mice, corresponding with amplified fibroblast activation and formation of more supportive fibrous tissues in the infarcts. Together, these data demonstrate that M2-like macrophages critically determine the repair of infarcted adult murine heart by regulating fibroblast activation and suggest that IL-4 is a potential biological drug for treating MI.

Authors

Manabu Shiraishi, Yasunori Shintani, Yusuke Shintani, Hidekazu Ishida, Rie Saba, Atsushi Yamaguchi, Hideo Adachi, Kenta Yashiro, Ken Suzuki

×

4-Dimensional light-sheet microscopy to elucidate shear stress modulation of cardiac trabeculation
Juhyun Lee, … , Rongsong Li, Tzung K. Hsiai
Juhyun Lee, … , Rongsong Li, Tzung K. Hsiai
Published March 28, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI83496.
View: Text | PDF | Corrigendum

4-Dimensional light-sheet microscopy to elucidate shear stress modulation of cardiac trabeculation

  • Text
  • PDF
Abstract

Hemodynamic shear forces are intimately linked with cardiac development, during which trabeculae form a network of branching outgrowths from the myocardium. Mutations that alter Notch signaling also result in trabeculation defects. Here, we assessed whether shear stress modulates trabeculation to influence contractile function. Specifically, we acquired 4D (3D + time) images with light sheets by selective plane illumination microscopy (SPIM) for rapid scanning and deep axial penetration during zebrafish morphogenesis. Reduction of blood viscosity via gata1a morpholino oligonucleotides (MO) reduced shear stress, resulting in downregulation of Notch signaling and attenuation of trabeculation. Arrest of cardiomyocyte contraction either by troponin T type 2a (tnnt2a) MO or in weak atriumm58 (wea) mutants resulted in reduced shear stress and downregulation of Notch signaling and trabeculation. Integrating 4D SPIM imaging with synchronization algorithm demonstrated that coinjection of neuregulin1 mRNA with gata1 MO rescued trabeculation to restore contractile function in association with upregulation of Notch-related genes. Crossbreeding of Tg(flk:mCherry) fish, which allows visualization of the vascular system with the Tg(tp1:gfp) Notch reporter line, revealed that shear stress–mediated Notch activation localizes to the endocardium. Deleting endocardium via the clochesk4 mutants downregulated Notch signaling, resulting in nontrabeculated ventricle. Subjecting endothelial cells to pulsatile flow in the presence of the ADAM10 inhibitor corroborated shear stress–activated Notch signaling to modulate trabeculation.

Authors

Juhyun Lee, Peng Fei, René R. Sevag Packard, Hanul Kang, Hao Xu, Kyung In Baek, Nelson Jen, Junjie Chen, Hilary Yen, C.-C. Jay Kuo, Neil C. Chi, Chih-Ming Ho, Rongsong Li, Tzung K. Hsiai

×

RBFox1-mediated RNA splicing regulates cardiac hypertrophy and heart failure
Chen Gao, … , Jau-Nian Chen, Yibin Wang
Chen Gao, … , Jau-Nian Chen, Yibin Wang
Published November 30, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI84015.
View: Text | PDF

RBFox1-mediated RNA splicing regulates cardiac hypertrophy and heart failure

  • Text
  • PDF
Abstract

RNA splicing is a major contributor to total transcriptome complexity; however, the functional role and regulation of splicing in heart failure remain poorly understood. Here, we used a total transcriptome profiling and bioinformatic analysis approach and identified a muscle-specific isoform of an RNA splicing regulator, RBFox1 (also known as A2BP1), as a prominent regulator of alternative RNA splicing during heart failure. Evaluation of developing murine and zebrafish hearts revealed that RBFox1 is induced during postnatal cardiac maturation. However, we found that RBFox1 is markedly diminished in failing human and mouse hearts. In a mouse model, RBFox1 deficiency in the heart promoted pressure overload–induced heart failure. We determined that RBFox1 is a potent regulator of RNA splicing and is required for a conserved splicing process of transcription factor MEF2 family members that yields different MEF2 isoforms with differential effects on cardiac hypertrophic gene expression. Finally, induction of RBFox1 expression in murine pressure overload models substantially attenuated cardiac hypertrophy and pathological manifestations. Together, this study identifies regulation of RNA splicing by RBFox1 as an important player in transcriptome reprogramming during heart failure that influence pathogenesis of the disease.

Authors

Chen Gao, Shuxun Ren, Jae-Hyung Lee, Jinsong Qiu, Douglas J. Chapski, Christoph D. Rau, Yu Zhou, Maha Abdellatif, Astushi Nakano, Thomas M. Vondriska, Xinshu Xiao, Xiang-Dong Fu, Jau-Nian Chen, Yibin Wang

×

Aberrant sodium influx causes cardiomyopathy and atrial fibrillation in mice
Elaine Wan, … , Hasan Garan, Steven O. Marx
Elaine Wan, … , Hasan Garan, Steven O. Marx
Published November 23, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI84669.
View: Text | PDF

Aberrant sodium influx causes cardiomyopathy and atrial fibrillation in mice

  • Text
  • PDF
Abstract

Increased sodium influx via incomplete inactivation of the major cardiac sodium channel NaV1.5 is correlated with an increased incidence of atrial fibrillation (AF) in humans. Here, we sought to determine whether increased sodium entry is sufficient to cause the structural and electrophysiological perturbations that are required to initiate and sustain AF. We used mice expressing a human NaV1.5 variant with a mutation in the anesthetic-binding site (F1759A-NaV1.5) and demonstrated that incomplete Na+ channel inactivation is sufficient to drive structural alterations, including atrial and ventricular enlargement, myofibril disarray, fibrosis and mitochondrial injury, and electrophysiological dysfunctions that together lead to spontaneous and prolonged episodes of AF in these mice. Using this model, we determined that the increase in a persistent sodium current causes heterogeneously prolonged action potential duration and rotors, as well as wave and wavelets in the atria, and thereby mimics mechanistic theories that have been proposed for AF in humans. Acute inhibition of the sodium-calcium exchanger, which targets the downstream effects of enhanced sodium entry, markedly reduced the burden of AF and ventricular arrhythmias in this model, suggesting a potential therapeutic approach for AF. Together, our results indicate that these mice will be important for assessing the cellular mechanisms and potential effectiveness of antiarrhythmic therapies.

Authors

Elaine Wan, Jeffrey Abrams, Richard L. Weinberg, Alexander N. Katchman, Joseph Bayne, Sergey I. Zakharov, Lin Yang, John P. Morrow, Hasan Garan, Steven O. Marx

×

Immune activation caused by vascular oxidation promotes fibrosis and hypertension
Jing Wu, … , Meena S. Madhur, David G. Harrison
Jing Wu, … , Meena S. Madhur, David G. Harrison
Published November 23, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI80761.
View: Text | PDF | Corrigendum

Immune activation caused by vascular oxidation promotes fibrosis and hypertension

  • Text
  • PDF
Abstract

Vascular oxidative injury accompanies many common conditions associated with hypertension. In the present study, we employed mouse models with excessive vascular production of ROS (tgsm/p22phox mice, which overexpress the NADPH oxidase subunit p22phox in smooth muscle, and mice with vascular-specific deletion of extracellular SOD) and have shown that these animals develop vascular collagen deposition, aortic stiffening, renal dysfunction, and hypertension with age. T cells from tgsm/p22phox mice produced high levels of IL-17A and IFN-γ. Crossing tgsm/p22phox mice with lymphocyte-deficient Rag1–/– mice eliminated vascular inflammation, aortic stiffening, renal dysfunction, and hypertension; however, adoptive transfer of T cells restored these processes. Isoketal-protein adducts, which are immunogenic, were increased in aortas, DCs, and macrophages of tgsm/p22phox mice. Autologous pulsing with tgsm/p22phox aortic homogenates promoted DCs of tgsm/p22phox mice to stimulate T cell proliferation and production of IFN-γ, IL-17A, and TNF-α. Treatment with the superoxide scavenger tempol or the isoketal scavenger 2-hydroxybenzylamine (2-HOBA) normalized blood pressure; prevented vascular inflammation, aortic stiffening, and hypertension; and prevented DC and T cell activation. Moreover, in human aortas, the aortic content of isoketal adducts correlated with fibrosis and inflammation severity. Together, these results define a pathway linking vascular oxidant stress to immune activation and aortic stiffening and provide insight into the systemic inflammation encountered in common vascular diseases.

Authors

Jing Wu, Mohamed A. Saleh, Annet Kirabo, Hana A. Itani, Kim Ramil C. Montaniel, Liang Xiao, Wei Chen, Raymond L. Mernaugh, Hua Cai, Kenneth E. Bernstein, Jörg J. Goronzy, Cornelia M. Weyand, John A. Curci, Natalia R. Barbaro, Heitor Moreno, Sean S. Davies, L. Jackson Roberts II, Meena S. Madhur, David G. Harrison

×
  • ← Previous
  • 1
  • 2
  • …
  • 15
  • 16
  • 17
  • …
  • 48
  • 49
  • Next →
Calpain-6 mediates atherogenic macrophage function
In this episode, Takuro Miyazaki and colleagues reveal that elevation of calpain-6 in macrophages promotes atherogenic functions by disrupting CWC22/EJC/Rac1 signaling.
Published August 15, 2016
Video AbstractsCardiology

Kruppel-like factor 4 keeps the heart healthy
Xudong Liao and colleagues identify KLF4 as an important regulator of mitochondrial development and function in the heart…
Published August 4, 2015
Scientific Show StopperCardiology

Oxidation impedes cardioprotection
Taishi Nakamura and colleagues reveal that oxidation prevents the beneficial effects of PKG1α in response to cardiac stress…
Published May 4, 2015
Scientific Show StopperCardiology
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts